- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
车载以太网面向汽车设计并实现EMI与EMC的挑战
汽车以太网的最初应用通常包括车载诊断系统(OBD),它大大缩短了软件的下载时间。似乎有一种普遍的共识:OBD将转向基于IP的接口(即以太网的物理层),而非速度较慢的传统CAN。展望未来,“实时”以太网AVB(音频视频桥接)将能够提供高性能的资讯娱乐网络解决方案,但是其所面临的挑战,不仅仅是单纯的技术问题。即使当汽车停在服务站(即并未行驶)时,OBD应用同样可以正常运行。当汽车行驶时,汽车制造商需要更加严格的EMI要求。以太网从未针对此类应用进行专门设计。那么,这项技术是否能够应对挑战
耐热和 EMC 性能
工业控制市场已经证明,以太网网络能够在极端条件下实现强劲的性能。大部分此类应用通常会面对较大的温度变化范围、剧烈震动、高EMC辐射以及灰尘或潮湿环境。以太网设备采用低功耗和封装设计,固此在将发动机环境温度升高到+85°C(正常温度)以上时,不会出现散热问题。例如,麦瑞半导体的 KSZ8041NL AM单端口快速以太网PHY解决方案(符合AECQ-100 标准),在耐热增强的5mmx5mm MLF 封装内,仅消耗175mW。KSZ8041NL 系列还提供军用规格变体,支持高达125°C的环境温度。
由于工业和汽车市场的需求,许多新一代以太网设备都具备显著改善的ESD(静电放电)性能。这是一个重大的观念转变,以前的办公应用并不十分重视 ESD 额定值。例如,麦瑞半导体KSZ8041 PHY和KSZ8851控制器系列的HBM(人体模型)ESD 额定值都大于 6KV。评估板也显示能够提供大于9kV的接触ESD和大于16.5kV的空气ESD 额定值,而不需要任何外部过电压保护设备。这超越了一般汽车厂商的电磁兼容性(EMC)要求,例如由宝马集团标准GS 95002的要求。
电磁辐射
目前行业对电磁干扰(EMI)性能的严格要求,是所有汽车电气设备都要面临的其中一项最严峻挑战。随着数据速度的增长,信号传输速度也越来越快,这会导致更高的能量排放。行业面临的第一个挑战是要设定以太网技术的排放限值和所需带宽。
就视频和相机成像传输来说,有关100Mbps快速以太网是否真正够用,或是否需要推进千兆以太网数据传输速度,仍然存有争议。这种选择很可能取决于相机应用程序是否支持视频压缩。
图1显示以太网电路板的典型辐射特性,使用的是麦瑞半导体的KSZ9021千兆PHY。毫不奇怪,峰辐射位于参考时钟的125Mbps谐波位置,超过了典型的OEM限值(此处以FlexRay为例)。
为保持一致性,如今在汽车运行时,以太网可以使用双绞线、同轴电缆或塑料光纤(POF)作为屏蔽电缆。标准以太网RJ45连接器和CAT5电缆具备非常强劲的性能,广泛应用在多个领域中(包含工业领域)。
但是,汽车应用中可能仍会采用(至少在最初阶段)现有的供应商特定连接器和接线器。以后将逐渐倾向于采用如ISO 13400中规定的标准化IP诊断接口。以太网PHY(收发器)可灵活使用此类连接器和线缆,而不会使性能显著降低。下表1列出了CAT5电缆的典型特性。
标准CAN电缆具有与非屏蔽双绞线CAT5电缆相似的特性。测试已证明了通过100m以上CAN电缆实现以太网长期无差错传输的可行性。这两种电缆之间的主要区别是,CAN电缆仅部分指定,并且不提供受控的阻抗或绞纽率。这样就无法保证EMC性能和信号完整性,所以CAN电缆一般不适用于高速数据传输。CAN电缆目前用于以太网车载诊断系统(OBD)和闪存更新。这些线缆在正常行驶中可能会被禁用,只有在维修店或生产工厂中才能被激活。
用于高速数据传输(例如汽车应用中的LVDS、USB和以太网)的电缆示例包括“Leoni 电缆”。“Leoni 电缆”使用受控的100ohm阻抗进行屏蔽,可胜任高达1Gbps的数据传输,性能指标类似于CAT6,而非 CAT5。它实际并非双绞线,而是一种名为Stern-Vierer(译作星绞四线)的四绞线。
第一款具有受控阻抗的汽车非屏蔽电缆是Kroschu 的FlexRay电缆,它能够实现优于CAN的EMC性能和信号完整性。虽然存在双绞线对和Stern-Vierer等电缆类型,标准的FlexRay电缆是指单独一个双绞线。CAT5提供四线双绞线,其中的所有双绞线都将用于千兆网络,而100Mbps快速以太网则只需使用其中两对。
为了提高可靠性,麦瑞半导体LinkMD等电缆诊断技术,提供了超越以太网定义标准的解决方案,以解决此类问题。LinkMD电缆诊断技术利用时域反射计(TDR)分析双绞线电缆的常见问题,例如开路、短路和阻抗不匹配。
塑料光纤(POF)是传统CAT5铜线电缆的一种替代选择。这种物理介质部署在MOST网络中,早已为汽车制造商所熟知。来自MOST(包括新的MOST- 150)的相同1mm LED POF技术也可用于100米范围的 100Mbps快速以太网传输。POF性能强大、质量轻巧,并且像其他光纤一样,完全不会产生电磁噪音(因没有散发辐射)。
然而,使用屏蔽电缆或POF的缺点在于成本高昂。目前,研究工作仍在继续开展;我们期待着开发出使用非屏蔽电缆实现辐射水平要求(至少满足快速以太网)的方法。有些提议的方法需要使用其他调制技术,这样会产生专有的不一致“以太网”。这并不符合以太网的独特魅力和成功精髓:通过现场验证、可互操作的开放标准,以及低廉的成本。此类方法不仅要实现开放性和自由访问的要求,还涉及数量众多的芯片供应商。这些方法能否顺利成功,还有待观察。
理想的解决方案需要能够增强标准以太网PHY设备的性能以减少EMI辐射。这些改进结合其他电路板和设备技术,为成功提供了现实机会,特别是快速以太网的成功。
相关阅读:
为你讲述:EMI/EMC原理及应对
使电源设计事半功倍的EMI/EMC设计
EMI解决方法之多层PCB设计
EMC电磁兼容设计培训套装,视频教程,让您系统学习EMC知识...
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
上一篇:电子产品的电磁兼容性设计问答(4)
下一篇:电子产品的电磁兼容性设计问答(3)