- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
EMC各部分元件原理解答
导言:要解决EMC问题,就要了解影响EMC的主要元器件的工作原理,本篇文章将为读者介绍共模电感、磁珠、以及滤波电容器的工作原理及使用情况。
一、共模电感
由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。
共模电感在制作时应满足以下要求:
1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。
2)当线圈流过瞬时大电流时,磁芯不要出现饱和。
3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。
4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。
通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。
二、磁珠
在产品数字电路EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。
铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。 在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。 在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小 但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。
铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。
使用片式磁珠还是片式电感主要还在于实际应用场合。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。 片式磁珠和片式电感的应用场合: 片式电感: 射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠: 时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。
磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。
另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。
三、滤波电容器
尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。
在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。
穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。
EMC电磁兼容设计培训套装,视频教程,让您系统学习EMC知识...
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
上一篇:
解极近场EMI扫描技术实例,汽车电子系统EMI/EMC测试保证
下一篇:TI专家教你如何设计EMC兼容的汽车开关稳压器
闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤旇棄搴婇梺褰掑亰閸犳帡宕戦幘鎰佹僵妞ゆ劑鍨圭粊顕€姊洪棃娑欘棞闁稿﹤顭烽獮鎴﹀礋椤掑倻鎳濆銈嗙墬绾板秴鈻嶆繝鍥ㄢ拻濞撴埃鍋撴繛浣冲洦鏅煫鍥ㄧ☉閻掑灚銇勯幒鎴濐仼闁藉啰鍠栭弻鏇㈠醇濠垫劖效闂佺ǹ顑冮崝宥夊Φ閸曨垰鍐€闁靛⿵濡囧▓銈嗙節閳封偓閸曨剛顦伴梺鍝勭焿缂嶄線鐛Ο鍏煎枂闁告洦鍘归埀顒€锕娲偡閺夋寧些濡炪倖鍨甸ˇ鐢稿Υ娴e壊娼ㄩ柍褜鍓熼獮鍐閵堝懎绐涙繝鐢靛Т鐎氼厼鈻撻鍓х=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炵闁挎洍鍋撶紒鐙€鍨堕弻銊╂偆閸屾稑顏� | More...
闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤旇棄搴婇梺褰掑亰閸犳帡宕戦幘鎰佹僵妞ゆ劑鍨圭粊顕€姊洪棃娑欘棞闁稿﹤顭烽獮鎴﹀礋椤掑倻鎳濆銈嗙墬绾板秴鈻嶆繝鍥ㄢ拻濞撴埃鍋撴繛浣冲洦鏅煫鍥ㄧ☉閻掑灚銇勯幒鎴濐仼闁藉啰鍠栭弻鏇㈠醇濠垫劖效闂佺ǹ顑冮崝宥夊Φ閸曨垰鍐€闁靛鍎崑鎾诲冀椤愮喎浜炬慨妯煎亾鐎氾拷婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犲綊鏌嶉崫鍕櫣闁稿被鍔戦弻锝夊箛闂堟稑鈷掑┑鐐茬墔缁瑩寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐鐑芥嚄閸撲焦鍏滈柛顐f礀閻ょ偓绻濋棃娑卞剭闁逞屽厸閻掞妇鎹㈠┑瀣倞闁肩ǹ鐏氬▍鎾绘⒒娴e憡鍟炴繛璇х畵瀹曟粌鈽夐姀鈾€鎸冮梺鍛婃处閸忔稓鎹㈤崱娑欑厪闁割偅绻冮崳瑙勩亜韫囨挾鎽犲ǎ鍥э躬椤㈡洟顢楁担鍓蹭紦
闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤旇棄搴婇梺褰掑亰閸犳帡宕戦幘鎰佹僵妞ゆ劑鍨圭粊顕€姊洪棃娑欘棞闁稿﹤鐏濋悾閿嬬附缁嬪灝宓嗛梺缁樺姈椤旀牕危濞差亝鐓熼柣鏂挎憸閻苯顭胯椤ㄥ牓寮鈧獮鎺楀籍閳ь剟寮冲⿰鍫熺厵闁诡垱婢樿闂佺粯鎸鹃崰鎰板Φ閸曨垼鏁冩い鎰╁灩缁犺崵绱撴担鐤厡闁稿繑锕㈠濠氭晲婢舵ɑ鏅i梺缁樺姈缁佹挳骞愰崘顔解拺闁荤喐婢樺Σ缁樸亜閹存繍妯€闁绘侗鍣i獮瀣晝閳ь剛绮诲☉銏♀拻闁割偆鍠撻埊鏇㈡煕婵犲倿鍙勬慨濠勭帛閹峰懘鎼归獮搴撳亾婵犲洦鐓涢柛娑卞枤缁犵偤鏌曢崱鏇犲妽缂佺粯绻堝畷鍫曟嚋閸偅鐝﹂梻鍌欑閹测€趁洪敃鍌氬偍闁伙絽澶囬崑鎾愁潩椤撶偛鎽甸梺鍝勬湰閻╊垶鐛Ο渚富閻犲洩寮撴竟鏇㈡⒒娴e憡鎯堥柣顓烆樀楠炲繘鏁撻敓锟�
闂傚倸鍊搁崐椋庣矆娴h櫣绀婂┑鐘插€寸紓姘辨喐閺冨牄鈧線寮介鐐茶€垮┑锛勫仧缁垶寮悩缁樷拺闂侇偆鍋涢懟顖涙櫠椤斿浜滄い鎾跺仦閸嬨儳鈧娲滈幊鎾诲煡婢跺ň鏋庨柟閭﹀枛缁插潡姊婚崒娆戝妽闁诡喖鐖煎畷鎰板即閻忚缍婇幃婊堟寠婢跺矈鍞甸梺璇插嚱缂嶅棝宕伴弽顐や笉闁哄被鍎查悡娆徝归悡搴f憼婵炴嚪鍥ㄧ厵妞ゆ棁宕电粣鏃€鎱ㄦ繝鍛仩闁告牗鐗犲鎾偄閸濄儱绲垮┑锛勫亼閸婃垿宕硅ぐ鎺撴櫇妞ゅ繐鐗勯埀顑跨閳诲酣骞樺畷鍥舵Ч婵$偑鍊栭幐楣冨窗鎼淬劍鍋熷ù鐓庣摠閳锋垿鏌涘☉姗堟敾閻庡灚鐟╅弻宥堫檨闁告挾鍠庨锝嗙節濮橆厽娅㈤梺璺ㄥ櫐閹凤拷
婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸婂爼鏌涢鐘插姎闁汇倗鍋撶换婵嬫濞戝崬鍓伴梺鍛婅壘缂嶅﹪鐛弽銊︾秶闁告挆鍚锋垶绻濆▓鍨仩闁靛牊鎮傚濠氭偄閻戞ê鏋傞梺鍛婃处閸嬪嫯顤傞梻鍌欑閹诧繝宕洪崘顔肩;闁瑰墽绮悡鐔煎箹濞n剙鈧倕岣块幇鐗堢厵妞ゆ棁鍋愰崺锝団偓瑙勬礃濞茬喖鐛惔銊﹀癄濠㈣泛鑻獮鎺楁⒒娴gǹ鎮戠紒浣规尦瀵彃饪伴崼婵囪緢濠电姴锕ら悧濠囨偂閺囩喆浜滈柟鏉垮閹偐绱掗悩绛硅€块柡灞剧☉椤繈顢橀悩鍐叉珰闂備浇顕栭崰娑綖婢跺瞼绠旈柣鏃傚帶閻愬﹦鎲稿鍥╀笉闁荤喖鍋婂〒濠氭煏閸繂鏆欏┑锛勬櫕缁辨帡顢欐總绋垮及濡ょ姷鍋涢ˇ顖濈亙闂佸憡渚楅崰妤€鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚�