• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 光缆接入网的建设

光缆接入网的建设

录入:edatop.com     点击:
季硕

  随着我国加入WTO以及电信运营市场的拆分、重组,接入网的重要性愈加显得突出,无论哪个运营商,只有拥有接入网才能将服务提供给最终用户,才能在市场竞争中立于不败之地。

  接入网的光纤化在优化网络结构、提高经济效益、发展电信业务和增强市场竞争力方面起着至关重要的作用。为推动接入网的光纤化进程,逐步实现接入网的宽带化、数字化和综合化,根据各地的经济发展、自然地理条件以及目前的电信网现状,结合国家就接入网建设方面的相关技术政策及体制,在总结光纤网络先期建设经验的基础上,本文对接入网中光缆网络的建设作一探讨。

1 光缆网络的重要性

  光纤接入网的建设需要考虑的两个基本要素是接入设备与光缆物理网,其中光缆物理网的规划尤其重要,这是由线路系统的特殊性决定的。

① 线路系统的服务年限较长,一般在20~30年;

② 线路系统扩容非常困难,网络终端设备可通过升级或更新(在提供宽带业务时尤其如此)来适应用户需求,而线路系统一旦敷设完毕则很难进行大规模变动;

③ 线路系统一次性投资很大,在综合建设成本中占有较高的比重。

  鉴于以上原因,在接入网的建设中应进行认真细致的规划工作,以建设一个结构合理、灵活安全、能充分适应未来发展需要的光缆物理网络。

  一个理想的光缆物理网络必须满足整体结构的长期稳定性和区域部分结构的灵活性这两个特点,以适应新业务和技术的飞速发展。

2 光缆线路网的建设原则

2.1 光缆线路配线法

  因不同城市或同一城市内的不同区域对宽带业务的需求量是不同的,所以如何采用灵活方便且适应性强,并便于将来用户光缆网扩容的配线法,是目前用户光缆线路网络设计需要研究解决的一大课题。常用的用户光缆线路的配线方法有以下3种。

2.1.1 星树型递减直接配线法

  星树型递减直接配线法与以前的铜线电缆直接配线法类似,即接入用户的配线光缆直接从主干光缆中引出,主干光缆的芯数从局端起向远端节点(即远端光分纤箱)逐级减少。

  因星树型递减直接配线法是向各个远端节点分配用户所需的主干光缆纤芯,根据节点所需的光纤数量及递减情况确定主干光缆的纤芯数,因此光缆纤芯的通融性极差。主干光缆的纤芯数很多,光纤资源不共享,利用率低。如果节点的用户预测稍有偏差,就会造成新节点无纤芯而原有节点纤芯过剩,从而影响新用户的发展。另外,该配线法在可靠性方面也存在问题,当主干光缆线路出现故障时,因无备用或迂回光纤,受影响的用户面较广。

  在用户光缆线路网建设初期,因光缆价格高、高速宽带业务需求量小且用户分散等原因,目标局至远端节点可采用星树型递减直接配线法进行小范围内的用户光缆线路网建设。随着光缆价格的逐渐降低和高速宽带用户的逐渐增多,则应该从光纤宽带、低损耗的特性出发,寻求一种更新型的用户光纤配线法。

2.1.2 星树型无递减交接配线法

  星树型无递减交接配线法的网络结构与星树型递减直接配线法相类似。两者间的主要区别是:无递减交接配线法增加了光缆交接箱。该配线法中,从局端到光缆交接箱、光缆交接箱到光缆交接箱之间的主干光缆纤芯无递减,配线光缆从光缆交接箱中引出。星树型无递减交接配线法的最突出优点是主干光缆纤芯的通融性极高,能够满足不断增长的新用户的需求,且不同光缆交接箱中的节点可使用主干光缆中的同一对光纤,这就充分利用了光纤宽带、低耗的特性,使主干光缆的纤芯使用率增高。另外,也降低了用户光缆线路网的综合建设成本。这种配线法的最大缺点也是可靠性差。

2.1.3 环型无递减交接配线法

  环型无递减交接配线法是指主干光缆闭合成环,在环路上主干光缆纤芯无递减,配线光缆也从光缆交接箱中引出。环型无递减交接配线法与星树型无递减交接配线法有相同的优点,但更为重要的是,因主干光缆闭合成环,使得整个用户光缆线路网的可靠性大大提高。特别是设备采用环路保护技术组网后,当主干光缆上的某一点出现故障时,通信业务能在极短的时间内自愈恢复,使用户受影响的程度减至最低,甚至感觉不到光缆线路发生了故障。缺点是成本相对较高,安全性随着环上节点的增加而降低。

2.2 光缆配线法的选择

  由于接入节点的业务类别、范围大小、节点位置远近以及经济能力等诸多因素,使得光纤接入网的网络结构要根据实际情况来确定。基本原则是:首先建设主干光缆网,确定主干网络的网络结构,然后根据具体区域的实际情况发展配线网。只要有业务需求,有可发展的用户,就可建设配线网络,使其就近接入主干网。在选择用户光缆配线法时应考虑主干光缆的长期稳定性、配线光缆的灵活性,以及整体网络的可靠性和经济性。

  环型无递减交接配线法无论在通融性还是可靠性方面都是较好的,在经济条件允许时应优先选择。这种网络结构主要针对大中城市业务量发展较快、种类繁多、用户密集,可组成含多个局(所)的环型结构。

  在用户分散和需求稳定的区域,可考虑采用星树型递减直接配线法。

  在城市郊区或小城镇,由于用户密度较低,业务种类简单,在接入网建设的初期,用户业务需求暂时不太明朗,很难作出准确的业务预测,大规模的光缆网络建设可能会使投资在相当长的时期内不能发挥效益,因此可对确有业务需求的用户以及适宜光纤接入的地区采用光纤到大楼、光纤到小区的方式进行建设,条件允许的情况下也可利用自愈环的方式提高网路的安全性。这种网络结构的特点是基本不划分主干和配线光缆,而是根据明确的用户需求决定光缆的路由和芯数。因此初期宜采用星型或总线型结构,待以后业务和用户发展起来时再逐步建立环型混合网。

  在以上几种结构的光缆网中,光缆路由的选择以及芯数的取定都要以城市整体发展建设规划为指导、以业务需求预测和用户分布为基础来进行,但由于光缆的服务年限较长,而业务预测受到种种因素的限制,对其预测的准确性和可操作性影响较大(尤其是对中远期),因此在进行用户光缆线路网设计过程中,应根据当地实际情况灵活地运用用户光缆线路配线法,这样才能够达到预期目的。

2.3 光缆交接区的划分

  由于光缆与电缆之间存在本质上的区别,因此用户电缆线路网中交接区最佳容量的计算方法不适用于用户光缆线路网。但交接区划分的原则是一样的,即光缆交接区应依附城市规划,以城市的河流、湖泊、公园、绿化带、主要街道及其他妨碍光缆线路穿行的大型障碍物为界,并结合城市中现有通信管道的实际情况进行划分。

  光缆交接区一旦划定,应相对长期稳定,不宜频繁地调整,避免重复投资、重复建设。这是因为,光缆交接区实际上就是一个以光缆交接箱为中心的小区域线路网络中心。光缆交接区的稳定,有利于用户光缆线路网的规划和管理,同时也减少了调整线路的工程量。换句话说,“稳定”带来了巨大的经济效益和使用效益。

  电缆在短时间内不可能完全被淘汰,所以在现在和将来的一段时期内,用户电缆和用户光缆将长期共存,两个网为重叠网。在划分光缆交接区时,应根据现有电缆交接箱的分布情况,尽量做到一个光缆交接箱分管几个电缆交接箱用户。

2.4 光缆交接箱的设置

  光缆交接箱应尽量设置在安全、隐蔽、施工维护方便、易于进出线、不易受外界损伤及自然灾害影响,同时又符合城市规划和不妨碍城市交通、不影响市容观瞻的地方。另外,从无递减配线法的特点可以看出,光缆交接箱的设置地点越靠近主干光缆路由,则引入光缆交接箱的主干光缆受损伤的机会就越少。除此之外,光缆交接箱内的光纤接头对防尘、防潮的要求也比较高,所以光缆交接箱也应尽量设置在有良好防尘、防潮的地方。在高压走廊,高温、腐蚀严重、易燃易爆的工厂和仓库附近,易受淹没的低洼地等场所不宜设置光缆交接箱。

  综上所述,光缆交接箱最好设置在靠近主干光缆路由、进出线方便的地方,并考虑长远的维护便利。

  光缆交接箱的箱体容量应考虑远期需求,即采用大容量、模块化结构,其配线单元可按满足近期业务进行配置,箱体容量选择需考虑中远期灵活方便地上下光纤,这样将来业务发展时可采用增加模块的方式扩容。

2.5 用户光纤及光缆的选择策略

  接入网传输距离近,带宽要求不很高,但成本要求很严格,因此在接入网中使用1310nm波长性能最佳的单模光纤,即G.652光纤。考虑到光纤本身的传输损耗很低,光节点间距离一般也较短,所以应尽量避免追求过低的衰减参数,光纤衰减参数越低,光纤的造价就越高。光纤损耗过小时,光设备可能要加装衰减器,额外增加工程造价,并使系统的可靠性下降。

  对于48芯以上的光缆采用带状光缆。带状光缆是一种高密度的光缆结构,这主要是多芯数具有较好的性能价格比,抗微弯性能好,机械保护性能也好,而且带状光缆的直径小,光纤密度高,便于实现一次多芯连接,每带光纤可以是4~16芯,建议采用每带12芯的光纤带。总之,带状光缆在用户接入网建设中具有很大的优势,特别适合纤芯数量较多的场合。

  应尽量统一在少数几种光缆类型和光缆纤芯数,使相应的纤芯连接器等器件品种一致,方便日后线路施工、维护和管理。

2.6 主干光缆芯数的取值

  主干光缆纤芯数量是由光纤接入网结构、接入节点的数量以及接入网设备等诸多因素来决定的。主干光缆纤芯数量的取定应充分满足近期组网所需芯数,本着适度超前的原则,考虑期限应为5~10年,至少应为48芯。

  建议主干光缆的容量以满足5~10个的光交接点的接入为宜,光缆的容量尽可能选择大对数带状光缆,一般以96、144、192等芯数为主。对于用户密度较低、用户需求较为单一的地区,也可选择48芯的光缆;对主干光缆长度较长、用户密度较大、光交接点数量较多的段落,亦可选择更大芯数的光缆,如216、288芯等。

  从经济性考虑,在确定光缆芯数时,主干光缆芯数须考虑远期的宽带业务。考虑到用户对宽带业务需求和技术发展的不确定性,以及投资的经济性,并充分利用光交接技术的优点,主干光缆建设可分期实施。

  从管孔的利用考虑,在用户光缆线路网发展初期,主干光缆的芯数既不能太多,也不能太少,太多则浪费主干光纤,浪费投资,太少则主干光缆中可通融使用的光纤数量少,不利于业务的变更和发展,同时也浪费了城市宝贵的地下管孔资源。另外应该注意管孔的管径,现城市铺设的管道大部分是内径90mm的水泥管道和内径100mm的塑料管道。按目前光缆的制造水平,100~250芯光缆外径一般在16~21mm之间,在管孔中穿放3孔28/32mm塑料子管,100~250芯光缆具有较高的管孔利用率;若主干光缆的芯数小于100芯,则管孔的利用率较低。

2.7 主干光缆纤芯带的使用

  若将主干光缆的纤芯在各光交接箱终端并配线,则可方便灵活地组网,但过多的光纤跳接可能引起线路指标劣化以及增大投资。为保证纤芯的灵活调度和保护投资,在工程实施中可将主干光缆纤芯带规划为共享纤芯带、独享纤芯带和直通纤芯带3种类型。

2.7.1 共享纤芯带

  在主干光缆上安排1或2带纤芯(12芯/带),在每个光交接箱都进行熔接配线,作为公共纤芯,可与配线光缆网经光纤连接器连接灵活组网。一般来说,此纤芯带纤芯在整个光缆纤芯带中最为重要,最为宝贵,一般供多个节点组成环网用。以SDH业务为例:按2芯作为5+1的线路保护备用,则1带纤芯最少可组成5个SDH网络,按一般每环(或链路)10个节点、每节点平均容量为1000线计算,则此光纤带12芯至少可纳入5万线用户。对于初期建设,在此纤芯带上开通的业务以窄带业务为主。此纤芯带纤芯主要用于环形、链型网络拓扑结构,纤芯的利用率最高。

2.7.2 独享纤芯带

  按每个光交接箱独立地至少终端1带光纤考虑。此纤芯带纤芯的用途为:

①电信大用户租用纤芯;

②局方为满足用户需求,而增设点到点(局端到远端节点)的光网络单元(ONU)节点;

③最主要用于IP城域网业务,如FTTx+DSLAM或FTTx+LAN(其接入层节点和上层网络节点所组成的网络均是星型结构,比较浪费纤芯)。

  对于可采用链型或环型方式组网(如采用SDH技术的ONU节点)的节点不宜设置过多,因为这样降低了纤芯利用率,并使局端设备的光口数增多。从而增大投资,在此纤芯带上设置ONU的目的是局方来不及做网络调整,而将新增业务节点单独组网,为用户开通独立的SDH光通道,当这样的节点增加到一定数量时,局方可做网络调整,将新增节点重新组网以达到网络优化的目的。此纤芯带纤芯主要是用于星型网络拓扑结构。

2.7.3 直通纤芯

  主干光缆预留1~3带光纤不在任何光交接箱内终端,设置直通纤芯带作为以上两种纤芯带的预留,另外还可用于主干光缆线路监测使用。在业务发展过程中可将此纤芯带调整成共享纤芯带或独享纤芯带。设置这种纤芯带的原因是业务和用户预测比较困难,考虑到现有的纤芯利用率不高,并且现有纤芯安排可能不适应将来的业务发展,那么目前采用不作为的方式,以达到将来光缆纤芯动态调节的目的。

2.8 光缆交接点进纤数量

  光缆交接点的进纤数量(支路纤芯数量)以24~48芯为宜,每个光交接点一般覆盖4个以上的光节点。光节点以6~12芯为基本单元。高密度区以12芯为单位确定配线光缆芯数,配线光缆纤芯的使用原则为:2芯作为话音及窄带通信业务,2芯留作今后宽带业务使用,4芯作为以上窄带和宽带成环用,2芯供CATV使用,2芯作为备用。郊区部分根据各村镇的地理位置,引入的光缆芯数不应少于6芯。对于配线光缆,光缆制式选用一般普通光缆,6芯或12芯光缆应一次布放,即主干光缆可分期分批建设,配线光缆建设一次到位。

光交接点间建议采用12~24芯光纤作为连接光纤。

2.9 光节点的设置

  采用光节点的概念,建立不同业务类别、用户数和服务范围的小区节点模型,可使接入网按小区节点的模式配置网络设备,便于今后分类进行业务升级和业务集中管理。

按照业务类别分为以下几种:

① 商业区:电话和数据;

② 普通住宅区:电话、数据、CATV;

③ 豪华住宅区:电话、数据、CATV和交互式视频;

④ 企事业区:电话和数据;

⑤ 科教区:电话、数据、CATV和交互式视频;

⑥ 边远城郊、农村地区

上一篇:宽带接入技术的发展与应用(一)
下一篇:光纤和对绞数字用户线(xDSL)的会聚

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图