- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
光信号同步的间接测量方法和结构时间:
主机部分
第一阶段,主机光发射器发出同步光信号,启动各个测量部件同时进入测量状态,此时,单片机的P3.4/T0引脚设置为输出状态,当工作时会产生调制信号,经过反相器74LS04驱动光电发送器,按照程序的约定这个信号是表示"启动"的光信号,即通过该光信号向每个测量部件传送开始测量的同步信号。
第二阶段,每个测量部件同时进入测量,测量完成后再由各个部件依次将测量数据传送回主机。主机对P3.3/INT1引脚的脉冲进行测量和程序识别,经过解码确定测量部件所发出的信号,完成"取回数据"的工作。
测量部分
每个测量部件电路结构如图1所示,其中以UA1(OP07)为主的部分是信号放大器,例如在以钳形电流作为对电流信号的测量时,输入的电信号一般比较小,必须经过放大处理。而以UA2(LM331)为主的部分则是过零比较电路,主要用于将信号转换为过零变化的方波,这个方波的上升沿表示交流信号的过零点。在图1中还包含光电耦合器SA1(TIL117),它一方面进行电路隔离,同时还将方波信号转换为TTL电平以便在单片机的P3.2(INT0)上进行测量,这个引脚设置为输入状态,利用软件很容易对方波信号的上升(或下降)沿进行测量。与现有电路比较,其测量部分简化了很多,传统电路是对两个回路的交流信号进行处理—即将两个信号的过零点在一个设备中进行直接比较以确定出相位差(Δtx)。而该电路不再基于对两个信号之间直接进行比较,且测量方法也发生了很大的改变,它是采用一个公共的光脉冲作为测量同步信号。
测量完成后由测量部件单片机的P3.4/T0引脚输出开关量信号,经过反相器74LS04驱动光电发送器,然后通过光信号向主机传送每个测量部件的测量数据。由于对每个测量部件都进行了编号,各个测量部件的工作程序会依据本身序号依次向主机发送数据。
工作时序
图2描述了进行数据通信的时序关系,当光接收器输出信号出现下降沿(即Ps=0)时,表示接收到主机的信号,上升沿到来时开始计时,而且以后的数据传送也是以这个上升沿为参照标准。测量时间Txi +T0i 和Txj+T0j不大于40ms。对于第一个测量部件在同步信号启动测量以后再延时TM1≥Txi +T0i就可以传送数据了。为了可靠,本设计取TM1=50ms作为测量过程的延迟时间。设每次传送数据的时间为TN,那么第二个测量部件传送数据的延时就是第一个延迟时间加上TN,即:TM2= TM1+TN,后面的延时TM的计算依次类推。
主机会根据这个过程在其内部存储区依次保存各个部分的测量数据,以便后来的计算和显示。
图2 数据通信的时序关系
结语
这种间接测量的方法是在传统的测量方法基础上的一种改进,光信号作为一个参照量被引入到测量过程,依靠计算机的控制、存储、运算和处理等功能,得到最终的参数数据。由于这种方法依靠光信号作为同步和数据传输,多个测量回路不再需要在电路上的直接连接,而是独立进行,这对于解决实际问题来说非常有用。
上一篇:光突发交换(OBS)的网络结构和节点结构
下一篇:中兴通讯下一代PON解决方案