- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
浅析智能光网络控制平面技术的发展
录入:edatop.com 点击:
在光网络行业,目前出现频率比较高的一个词就是智能光网络,而智能光网络主要遵循ASON(AutomaticSwitchedOpticalNetwork),或GMPLS(Generalized Multiprotocol Label Switching)。
随着智能光网络GMPLS/ASON技术的应用开始规模凸现,大家开始意识到,传送网络的建设和发展不仅仅包含传送硬件技术,传送网络的统一网管、传送网络的统一控制是网络建设和设备技术发展的另外两个维度。网络管理基本上是和传送硬件技术同步发展的,有组网就有管理的要求,网络管理相对而言较为成熟,但是21世纪初刚刚兴起的控制平面技术起步较晚。本文将重点关注控制平面技术的发展情况。
智能光网络控制平面的主要功能包括三部分:自动发现、路由和连接控制。自动资源和网络拓扑发现使得网络更加易于扩容或升级,也便于维护及管理;此外基于路由和连接控制功能,每个具备控制平面的传输节点,可以自主实现业务连接的建立或者拆除;在网络发生故障的时候,控制平面可重路由,使得网络不用为每条业务预留专用保护带宽,即可避开故障点重新建立连接,从而改善了网络带宽利用率。此外,通过保护和恢复的组合,光网络可提供丰富的业务保护方式,不同的业务基于其可靠性要求,可选择不同的保护或者恢复方式。目前在网运行的GMPLS/ASON控制平面,其对应的传送平面由SDH/SONET设备构成,且GMPLS/ASON与SDH/SONET的结合使得光网络可靠性大为提高,并获得了越来越广泛的应用。
传送技术的发展日新月异。随着业务种类越来越丰富,分组业务所消耗的带宽比重越来越高,业务颗粒也越来越大。处在分组主宰的时代,众人的关注点聚焦在CarrierEthernet和波分上,认为数据业务需要本色而大容量的传送方式。原本为话音承载而设计的SDH/SONET设备的前景似乎越来越黯淡,从而有人质疑:ASON还有前途吗?GMPLS/ASON控制平面并不仅仅依托于SDH/SONET设备,ITU-T定义的ASON标准可适用于SDH体系和OTN。同样,自动发现、路由和连接控制带给传送网络的价值也同样适用于CarrierEthernet设备。
大颗粒业务的传送对WDM节点的业务疏导能力提出挑战。近年来,ROADM(ReconfigurableOpticalAdd-DropMultiplexer)技术已经获得了一定的突破,WSS等基于MEMS的技术解决了光波长的可重配问题,从而在一定程度上,能够实现光波长的灵活上下和穿通。业界多个厂家业已推出具备光层可重配特性的WDM系统。此外,鉴于OTN对波分系统在节点的定义、端到端管理方面均具备优势,因而,OTN也成为了热门话题,开始出现在商用传输设备上。随之而来的就是对波长/子波长动态化的控制要求——正如ASON之于SDH/SONET的ADM设备。WDM设备的ASON/GMPLS控制平面基础功能须包括:网络资源(网元、光纤、链路、时隙等)自动发现,网络拓扑自动发现;光波长业务和子波长业务点击快速提供,光层波长级业务保护恢复,电层子波长级的保护、恢复,以及保护和恢复的结合等基础功能。但是,波分系统上实现GMPLS/ASON控制平面的难度要远大于SDH/SONET控制平面,因控制平面需要考虑光层上的一些光学限制,如功率、色散、信躁比等;而如果考虑OTN的ODU1/ODU2交叉颗粒,以及OTN和ROADM的并存,那么控制平面必然涉及多层控制的问题,实现就更为复杂。GMPLS/ASON控制平面应用于WDM系统是一个必然的发展趋势,一些国外大运营商业已发布了一些白皮书或者联合招标书RFP,当中明确地提出了对基于WDM的GMPLS/ASON控制平面的构想或需求,多个厂家业已宣称支持基于WDM的GMPLS/ASON控制平面,但至今仍未有商用验证。
在城域侧,未来传送的内容将以分组为主,多业务传送平台MSTP、传统以太网设备、电信级以太网设备CarrierEthernet等陆续粉墨登场,现在尤以CarrierEthernet备受关注,因为CarrierEthernet定义了电信级属性,是“电信级属性+以太网业务”的有机结合,或者说,是一种“提供类似于SDH的运营维护管理OAM,并具备以太网的低成本和灵活特性”的新概念。而同时,TDM业务,如移动话音、TDM专线等仍将长期存在,因此,电信级以太网设备是以分组为内核,具备多种传送管道的传送平台。目前业界的几种城域以太网传送技术主要有MPLS、TMPLS(Transport MPLS)、PBT(Provider Backbone Transport)以及QinQ等。
但是,运营商级别的业务,不管是Packet还是话音,其内容对QoS有着差异化的明确要求,也需要高可靠的传送网络。因此,在CarrierEthernet网络中也有必要考虑引入控制平面。但到底是引入MPLS统一传送平面和控制平面,还是引入GMPLS技术构建分离的控制平面?从技术的发展来看,MPLS已经有了应用,只是MPLS难以延伸到城域末端;而从传送网络的建设需求来看,GMPLS更加适合于构建传送网络的控制平面。原因主要在于:WDM、SDH技术构建的传送网络将长期存在,尤其是WDM技术的价值历久弥新。网络从长途中继到城域接入传输,将会应用多种传送技术,如何实现这种混合网络情况下传送层面的端到端电路快速提供?第一个必要条件当然是CE设备、SDH设备、WDM设备的共网管,其次就是能够实现CE、WDM以及SDH设备的端到端统一控制。在这个要求之下,GMPLS是一个更佳的选择,因为GMPLS本身的协议架构就完整定义了从光纤到波长、子波长、TDM、Packet等业务的分层统一控制,且GMPLS可构建独立于传送网络的控制平面——独立的控制平面更易于实现分层网络的统一控制。
GMPLS/ASON控制平面从SDH延伸到WDM以及CE,甚至实现多个传送层面的统一控制,是技术发展的必然趋势。借助智能光网络控制平面,网络的可靠性得到提高,同时也可快速提供新的带宽业务如光虚拟专网OVPN、带宽点播BoD等,也可给网络的运维带来效率的提升和成本的降低。但是,美好的愿景仍旧受制于现实条件:厂家并不具备强大的OSS和其他网络/业务运营支撑系统;运营商内部的业务处理流程(如数据和传送部门的关系)制约了新业务的应用;智能光网络的网络设计理念需要变更,网络规划和工程实施都需要据此进行相应转变,而这个转变冷却了许多运营商对智能光网络的热情;此外,标准化进程也制约GMPLS/ASON控制平面的发展,还有技术难点需要攻克,以及标准化,如多层LSP嵌套、大规模多厂家多域组网等等。
作者:高戟 徐得慧 来源:中国电信网
上一篇:光纤端面处理对光纤激光器的影响
下一篇:为什么光缆出现故障