- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
宽带数字接收机的研究及实现
2.3.2 多相信道化滤波器组
经下变频得到I,O两路信号,为得到较高的频率分辨率,采用信道化法。该方法的基本原理是将输入的全带信号进行频带分割,即把接收到的信号频段分解成若干个不同频段(又称子频段或子信道),然后分别处理各子段。为得到更高的频率分辨率,各子频段可分别再进行第2次分割、第3次分割,直到满足频率分辨率的要求。由于该设计的接收机工作在中频,因此只需1次分割即可。
假设侦察系统接收的中频带宽为300 MHz,A/D转换器采样速率为600 MHz,带通采样,无模糊带宽为300 MHz,周期延拓后,中频带宽(300 MHz)落在其中的一个周期内,因此不会产生频率混叠现象。无模糊带宽(300 MHz)分为32个信道,输入分为实部和虚部。各信道带宽是9.375 MHz(300/32)。该系统设计采用基于DFT多相滤波器组的信道化滤波器技术,实现数字信道化滤波器。由于采用预先抽取方式,降低滤波运算的运算量。而IDFT可利用FFT实现。因此系统的数据率降低,实时性能很高。
该信道化设计采用多相滤波器算法,该算法比低通滤波器组的算法更高效,且硬件实现简单。其主要的运算是复滤波、复乘法和复IDFT运算。设接收机的信道数 N=32,低通原型滤波器阶数M=256(考虑到正交下变频单元已滤波,等价于多相滤波器为8阶),则所需乘法数:P=N+2M+Mlog2(M)=2 592。如果采用普通的低通滤波器组方式,则所需乘法次数:P=N(M+1)=8 224。可见,多相滤波器算法比低通滤波器组的算法更高效。其次,DFT采用FFT实现,FFT运算的核心是蝶形运算,由复数乘法和加法组成,可以利用 Quartus提供的IP核很方便实现。多相滤波模块的FPGA实现如图5所示。由于累乘累加后数据产生冗余位,可能导致后级运算溢出,因此需在中间过程数据截位,保证适当有效数据位。
3 模块测试
当输入为线性调频信号,f0=950 MHz,带宽B=30MHz,输入信号及频谱特征如图6所示。通过Matlab产生测试所需的线性调频信号,并保存为.dat文件,通过 testbench编写、读出.dat文件的数据作为模块的仿真激励。模块输出通过testbench写文件的方式输出,再通过Matlab绘图。信道输出如图7,输出信号的能量主要集中在11~13信道,频域输出幅值约为-3 dB,而其他通道输出都在-40 dB以下。因此,确定门限后,可输出这些通道的信号。
图7左列横坐标为时域采样点数,右列为频域归一化频率,频谱范围为-150~150 MHz。可以看出,线性调频信号经接收机后,从各通道的输出在时域上是顺序的。依据此特征.在后续模块中可判断出输入信号是线性调频信号。可见,这种基于多相滤波器组的数字信道化算法,对于高速采样的信号具有降速和下变频的作用,输入信号落在覆盖频带内,只输出有效信号通道并进一步处理,处理带宽大大减小,因此后续处理速度降低。
4 结束语
提出基于FPGA的一种宽带数字接收机的设计及实现方法,通过信道化的方法提出有用信号通道,输出的有效带宽大大减小,降低了后续信号处理的速度,因此节省了硬件资源并可获得更好的频域分辨率。模块仿真测试结果表明宽带数字接收机在FPGA上实现的可行性以及实用性。
作者:魏旭光,任辉 陕西西安 来源:国外电子元器件