- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
短帧Turbo译码器的FPGA实现
Turbo码虽然具有优异的译码性能,但是由于其译码复杂度高,译码延时大等问题,严重制约了Turbo码在高速通信系统中的应用。因此,如何设计一个简单有效的译码器是目前Turbo码实用化研究的重点。本文主要介绍了短帧Turbo译码器的FPGA实现,并对相关参数和译码结构进行了描述。
1 几种译码算法比较
Turbo码常见的几种译码算法中,MAP算法[1][3]具有最优的译码性能。但因其运算过程中有较多的乘法和指数运算,硬件实现很困难。简化的MAP译码算法是LOG-MAP算法和MAX-LOG-MAP算法,它们将大量的乘法和指数运算转化成了加减、比较运算,大幅度降低了译码的复杂度,便于硬件实现。简化算法中,LOG-MAP算法性能最接近MAP算法,MAX-LOG-MAP算法次之,但由于LOG-MAP算法后面的修正项需要一个查找表,增加了存储器的使用。所以,大多数硬件实现时,在满足系统性能要求的情况下,MAX-LOG-MAP算法是硬件实现的首选。通过仿真发现,采用3GPP的编码和交织方案[2],在短帧情况下,MAX-LOG-MAP算法同样具有较好的译码性能。
如图1所示,帧长为128,迭代6次,BER=10-5的数量级时, MAX-LOG-MAP算法的译码性能比MAP算法差大约0.6dB,比LOG-MAP算法差0.2dB左右。所以,本文采用3GPP的交织和(13,15)编码方案,MAX-LOG-MAP译码算法进行短帧Turbo码译码器的FPGA实现与设计。
2 MAX-LOG-MAP算法
为对MAP算法进行简化,通常将运算转换到对数域上进行,避免了MAP算法中的指数运算,同时,乘法运算变成了加法运算,而加法运算用雅可比公式简化成MAX*运算[4]。
将运算转化到正对数域进行运算,则MAX*可等效为:
按照简化公式(3)对MAP译码算法[1][3]的分支转移度量、前向递推项、后向递推项及译码软输出进行简化。
分支转移度量:
为防止迭代过程中数据溢出,对前后向递推项(5)、(6)式进行归一化处理:
来源:21IC电子网
上一篇:TD-HSPA:
畅游移动新生活
下一篇:OMAP5912的嵌入式无线组播通信设计