- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
CPLD设计的CCD信号发生器技术
本文设计了一种基于CPLD的可编程高精度CCD信号发生器。充分利用CPLD的可编程性.模拟出满足系统要求的CD信号,输出信号频率达到1IMHZ。
1 引言
CCD (Charge Coupled Devices)电荷藕合器件是20世纪70年代初发展起来的新型半导体器件。目前CCD作为光电传感器由于其具有体积小、重量轻、功耗小、工作电压低和抗烧毁等优点以及在分辨率、动态范围、灵敏度、实时传输、自扫描等特性,广泛地应用于摄像材、气象、航天航空、军事、医疗以及工业检测等众多领域。
我们需要对CCD相机所获取的大量高速图像数据进行采集、存储,以便做后续处理和应用,而进行这一系列信号处理之前,目标信号的获取及所获信号的质量关系到调试整个相机系统的关键。在调试相机系统时,由于调试的系统总有一些不完善的因素,同时又因为多次的调试也会增加CCD芯片的风险成本,尤其对于比较昂贵的CCD芯片,调试中如若经常使用将会带来损坏的风险,因此在调试过程中对CCD芯片输出信号的分析和模拟就成为一项极其重要的工作。本文设计了一种基于CPLD的可编程宽频、高精度CCD信号发生器。充分利用CPLD 的可编程性,模拟出CCD在各种复杂环境下的采集信号,同时满足系统对波形和时序的要求, 输出信号频率达到11MHz。
2 分析CCD 输出信号的特点
一个 CCD 信号的输出序列由复位脉冲开始,当FET 开关闭合时,图1 中的传感器电容上的电压为初始的参考电压值,这个参考电压值被称为复位馈通电平。经过一定的馈通延迟时间后,这个电压值降低,成为真正的复位电平。此时,FET 开关打开,则像素电荷被转移到这个电容上,相应的改变了电容上的电压值。这个电压值就是参考电平、像素电平以及一些噪声叠加而成的。当CCD 开始工作读取有效信号时,输出信号在每个复位信号的上升沿时复位,即在输出信号上出现复位干扰脉冲1,然后回到参考电平2,开始读取积分得来的是像元信号3。实际像素宽度为3 的宽度,1、2、3 的宽度和为一个像素周期,每个像素的信号幅 度为2 和3 的高度差,这些都是CCD 输出信号的重要参数。CCD 输出的信号中包含了较大的直流分量。直流偏置电压是CCD 正常工作所不可缺少的,其值在几伏到十几伏范围内变化,并且只消耗几毫安以下的电流,很容易由稳压电源必要时经电阻或电位器分压以及电容滤波得到。
图1 CCD输出信号
3 硬件结构
整个系统由数字信号发生模块、数模转换模块和输出处理模块3部分构成。选取CPLD以构成信号发生模块,充分利用它的可编程性,构造出CCD在各种复杂环境下的采集数据,同时生成与数据信号相匹配的控制信号,控制下级数模转换模块的工作。数模转换模块接收上级发送过来的数据和控制信号,在控制信号的控制下将数据转换为模拟信号输出。由于该模块的转换输出为电流,所以还需要增加一个转换模块将电流转换为系统所需要的电压信号,同时为了满足系统对信号精度的要求,还需要增加有源和无源滤波电路模块。系统框图如图2所示,晶振作为CPLD的时钟信号(clk)输入,其它的信号均由其产生。
图2系统原理框图
主要工作分为以下几个方面:
(1)信号发生模块
利用 VHDL 语言设计CCD 输出图像信号和时序控制信号,输出信号有模拟出来的数字图 像信号(10 位并行输出)和时序控制信号,主要包括:相关双采样信号,A/D 采样所需时序 脉冲信号,行、场同步脉冲信号等。
(2)数模转换模块
将模拟的数字信号经由数模转换器得到模拟信号,高速的数模转换器件一般都是电流查 分输出,因此需要对输出的模拟信号进行后续处理。
(3)输出处理模块
对由 DAC 输出的模拟信号,通过运放将其转换为电压输出信号,并进行进一步处理得 到符合要求的CCD 输出信号。
4 信号发生模块CPLD 的设计
4.1选择符合要求的CPLD
本设计采用LATTICE公司的ispLSI1032e CPLD,该芯片共有84个引脚,可用门数达6000 个,192个逻辑单元,可单独配置为输入、输出及双向工作方式,64个通用I/O口,其传输延时为7.5ns,最高工作率高达125MHz,可以满足本设计的要求。该系统要求的输出频率为11MHz的相关双采样形式的CCD信号,并且对信号的时序有着严格的要求,选用66MHz的晶振,作为 CPLD的时钟输入。
来源:21IC电子网