• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 量差分输出、电流模式数/模转换器(DAC)的线性度

量差分输出、电流模式数/模转换器(DAC)的线性度

录入:edatop.com     点击:

以下举例说明利用MATLAB脚本计算MAX5889、MAX5890和MAX5891的线性度。每次计算都得到最小和最大DNL和INL误差编码和误差值。实例还为所有编码画出了传输函数,得到INL和DNL。要求用户输入前面表格中所列出编码的电压测量值。必须按照所列顺序输入数值。

计算16位线性度的MATLAB脚本

function Lin16(Measurements)

%Calculate INL and DNL of a 16-bit device with a 5-4-3-4 segmentation architecture

% DacCodes is the range of possible input data to the 16-bit DAC

DacCodes=[0:65535]';

%VOUT for each code is calculated from the measured points

%create a VOUT variable and fill it with zeros

VOUT=zeros(size(DacCodes));

%The first measurement is the zero-scale point, or code (0x0000)

ZS=Measurements(1);

VOUT(1)=ZS;

%The last measurement is the full-scale point, or code (0xFFFF)

FS=Measurements(length(Measurements));

VOUT(65536)=FS;

%Midscale is stored at position 43 of the input data array

MS=Measurements(43);

%The device has four segmentation levels

Segments=4;

%The decimal values for the LSB codes are 1, 2, 4 and 8

Seg1Codes=[1;2;4;8];

%The voltages for the LSBs are in positions 2-5 of the input array

for i=1:4

Seg1V(i)=Measurements(i+1)-MS;

end

%The second level of segmentation is controlled with input codes 16 through

%112 in steps of 16. Create the code array and fill the measurements for

%this segmentation level

Seg2Codes=[16:16:16*7]';

for i=1:7

Seg2V(i)=Measurements(i+5)-MS;

end

%Segmentation level 3 uses input codes 128 through 1920 in steps of 128.

%Create the code array and fill the measurements array.

Seg3Codes=[128:128:128*(2^4-1)]';

for i=1:15

Seg3V(i)=Measurements(i+12)-MS;

end

%Segmentation level 3 uses input codes 2048 through 63,488 in steps of 2048.

%Create the code array and fill the measurements array.

Seg4Codes=[2048:2048:2048*(2^5-1)]';

for i=1:31

Seg4V(i)=Measurements(i+27)-ZS;

end

%The endpoints have been defined, now fill in the voltages for the

%remaining points of the DAC transfer function.

for i = 2:65535

targetcode=i-1;

VOUT(i)=ZS;

for s=31:-1:1

if Seg4Codes(s)<=targetcode

targetcode=targetcode-Seg4Codes(s);

VOUT(i)=VOUT(i)+Seg4V(s);

s=0;

end

end

for s=15:-1:1

if Seg3Codes(s)<=targetcode

targetcode=targetcode-Seg3Codes(s);

VOUT(i)=VOUT(i)+Seg3V(s);

s=0;

end

if targetcode==0

s=0;

end

end

for s=7:-1:1

if Seg2Codes(s)<=targetcode

targetcode=targetcode-Seg2Codes(s);

VOUT(i)=VOUT(i)+Seg2V(s);

s=0;

end

if targetcode==0

s=0;

end

end

if targetcode==0

s=0;

end

for s=4:-1:1

if Seg1Codes(s)<=targetcode

targetcode=targetcode-Seg1Codes(s);

VOUT(i)=VOUT(i)+Seg1V(s);

end

end

end

%Plot the transfer function

figure(1)

plot(DacCodes, VOUT);

xlabel('DAC Input Code');

ylabel('Measured Voltage');

axis([0 65536 -1.1 1.1]);

title('DAC Transfer Function');

set(gca,'XTick',0:16384:65536)

%Calculate the linearity

来源:维库开发网

上一篇:浅析IPv6的发展和完善
下一篇:FPGA并行数字序列传输与接口技术应用

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图