- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
实现基于TCP/IP的多串口转换网关
3.3各串口的特点及应用分析
系统中两组串口利用的资源不同,在速率上它们之间存在差异。串口COMl、COM2和COM3通过GM8123扩展微控制器的UARTO得到,适合传输速率较慢、数据量小的设备;COM4是微控制器的UARTl,相对于第一组串口能很好的适应传输速率较快的设备。
GM8123工作在多道模式,各子串口必须设置统一波特率,不适用于各串口设备工作波特率不一致、又要求同时工作的场合,这也是该芯片的不足之处。实际应用中,COM1、COM2和COM3应该连接类型、速率相同的设备。COM4的波特率可以根据需求具体配置,这样,系统的4个串口从速率上可以形成两种应用方案:一是4个串口配置相同波特率;二是每l组配置1个波特率值。
综上所述,系统提供了由2组4个串口、两级优先级控制、2种波特率配置方案构成的多串口实现方法。
4 工作原理
4.1 帧的统一化
系统4个串口源的数据要作为以太网帧的一部分,为了向设备提供透明的接口和区分数据源,需要制定统一的帧格式。帧格式如图2所示,其中串口号字段用来区分数据源;帧头、帧尾作为一个串口帧的起始分界(可自定义);数据部分是来自串口的原始数据流。同样,网口发送数据也要有一致的帧格式,如图3所示。显然,串口帧是作为UDP层的协议数据进行传输的。
4.2系统数据流向分析
多串口转换网关,实现多个串口和一个网口间的数据转换,关键是多个串口数据如何送到网络上、网络数据又怎样转到多个串口。其中,串口链路层完成串口数据收发功能,串口网络层作为TCP/IP应用层的一部分,实现串口帧的封装。发送是入协议栈的过程,如图4所示,接收是出协议栈的过程(图略),不同之处在于对数据的收/发处理。
多串口到网口的数据转换传输:串口链路层,接收来自测控设备的数据,交给串口网络层,该层完成串口数据帧的封装并放入以太网的发送缓冲区。当系统规定的UDP打包时间到或已经有4个串口数据帧时,打UDP包,并逐层下送,直到把数据送上物理介质,完成比特流的传输。
为了能一次传输尽量多的数据,系统对数据长度作了严格定义:串口数据帧的数据段最大长度为300个字节;网口发送帧的数据段最多允许4个串口数据帧。同时,还要满足具体应用对实时性的要求:对每一个串口规定一个最长响应时间。时间到时,不管是否已接收:300个字节都要对串口数据进行封装,并放人以太网发送缓冲区;同时,为了避免系统由于等待以太网发送缓冲区串口帧数达到4,而造成串口数据不能实时发送,要求在一定的时间内进行一次以太网通信,而不必等待4个串口帧到齐才打包传输。
这样,系统对数据容量和时间的双重规定,能保证具体应用对实时性的要求,并能一次传输尽量多的数据,降低了由于时间上的"空等"造成系统实时性差的可能性。4个串口在串口层完成的功能是相同的,仅以COMl为例,给出串口层上数据流,如图5所示。
图6说明了多串口数据帧等待打包传输的过程。
网口数据到多串口的数据流向,是对以太网链路层的数据帧向上逐层解包的过程。如图7所示,将收到的以太网帧,依次去掉每层的协议头分解出应用层数据,再以0x24和OxOa为分界分离,根据串口号字段的值,将信息发送到相应的设备,完成预定的控制。
结语
本文介绍基于TCP/IP的多串口转换网关,采用GM8123芯片增加了串行口数目,适合要求入网串口设备多的场合。借助于该多串口网关,可方便的实现串口设备和监控层的透明数据通信,实现设备的网络化控制与信息的分布式管理,必能广泛的应用在基于以太网的分布式测控网络中。和它类似的还有GM8125串口扩展芯片,不过GM8125是一扩五的串口扩展芯片。
来源:21IC电子网