- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于VHDL的2FSK调制解调器设计
3 2FSK解调器设计
3.1 分频法实现2FSK解调器
过零检测法与其他方法比较,最明显的优点就是结构简单、易于实现,而且对增益起伏不敏感,特别适用于数字化实现。它是一种经济、实用的最佳数字解调方法。其方框图如图3所示。
它利用信号波形在单位时间内与零电平轴交叉的次数来测定信号频率。输入的已调信号经限幅放大后成为矩形脉冲波,再经微分电路得到双向尖脉冲,然后整流得到单向尖脉冲,每个尖脉冲代表信号的一个过零点,尖脉冲重复的频率是信号频率的两倍。将尖脉冲去触发一单稳态电路,产生一定宽度的矩形脉冲序列,该序列的平均分量与脉冲重复频率,即输入频率信号成正比。所以经过低通滤波器的输出平均量的变化反映了输入信号的变化,这样就完成了频率一幅度的变换,把码元"1" 与"0"在幅度上区分开来,恢复出数字基带信号。实现2FSK解调器的原理方框图如图4所示。
3.2 仿真结果
在MAX+PLUS软件平台上进行布局布线后进行波形仿真,其中clk为输入主时钟信号;start为起始信号,当start为"1"的时候,开始解调;x为输入信号,本文中在调制阶段的被调制信号,即是调制信号中的输出信号,y为输出信号,在正常情况下y就是在调制信号中的输入信号,在 q=11时,m清零。在q=1O时,根据m的大小,进行对输出基带信号y的电平的判断。在q为其它值时,计数器m计下xx(寄存x信号)的脉冲数。输出信号y滞后输入信号×10个clk。仿真结果如图5所示。
4 2FSK调制解调器整体设计
在整体设计过程中,整体电路如图6所示,其中x为基带信号,y为经过调制解调后的解调信号。
调制解调器设计仿真结果如图7所示。比较输入信号x与输出信号y,完全一样,只是系统仿真结果有一定的延时。仿真结果表明,系统设计正确。
5 结论
本文基于2FSK的基本原理,进行二进制调制解调器的设计。运用VHDL语言对器件进行功能描述,在MAX+PLUSⅡ软件平台上对所描述器件进行时序仿真,最后下载至目标芯片EPM7032LC44-15,分配合理引脚,进行仿真。设计过程中调制阶段的基带信号,经调制仿真得到解调所需的输入信号。解调阶段对来自调制阶段得到的信号进行解调,所得解调信号即为原来调制基带信号,起到了调制解调的作用。整个设计过程采用VHDL语言实现,设计灵活、修改方便,具有良好的可移植性及产品升级的系统性。
作者:连云港市无线电监测站 刘家庆 来源:电子科技
上一篇:地址扩展转换器及其在RS-485通信中的应用
下一篇:大唐移动开创无线新体验