- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
新型谐振式螺旋天线的设计
图 2 八臂螺旋天线等效图
三、 关键技术及其实现方法
1.馈电方式的选择
采用何种馈电方式,直接影响到天线的工作频带和方向图的圆极化性能。由于这种螺旋天线要求四条馈电臂上的电流幅度相等、相位两两相差90°,因此较为常用的方法是将四根长为λ/4、电流分布符合要求的同轴电缆直接跟螺旋臂相连,但这是一种窄带馈电方法,在工程上也不易于实现。而我们采用的无限巴伦结构很好地解决了这个难题,具体做法是用作为馈线的同轴电缆穿过一条螺旋臂后,在顶点(馈电点)将其外导体和内导体分别连在这条臂和对面的那条臂上,利用同轴电缆的内导体外壁与外导体内壁上的电流大小相等,方向相反的特点,完成对相对的两根螺旋臂的等幅反相馈电。此外,还需要附加一个功分器来保证两根馈线上的电流幅度相等、相位正交。
2.展宽波束的途径
尽管减少螺旋的直径与高度之比能使波束变宽,但它对θ面和Ф面方向图的影响不同,因而轴比小于3dB的波束仍然不宽,并且还会出现主瓣分裂现象。为了达到展宽波束的目的,我们在天线的下面附加一块长和宽均在1.25λ左右的金属反射板,这使得天线的最大辐射方向发生偏移,而在轴线方向出现一个凹坑。调节金属板与螺旋中心的距离h,凹坑的深度和方向图的半功率宽度均随着改变。当h =λ/4时,波束达到最宽,其值大大超过了没有金属板时的情况,并且轴比亦得到改善。
3.结构
为了保证天线的电气性能指
标和可靠性,我们采用了不同于四臂螺旋天线的结构。在天线的顶部有一个塑料圆盘,起到固定螺旋臂和减少两根垂直馈电电缆相互耦合的作用;天线的底部有一个金属安装盒,以便把八根螺杆焊接在一起。塑料圆盘、金属安装盒和底面反射板则通过一根高强度的不锈钢圆杆固定在一起。
四、 实验结果
我们按照上面的思路设计了一个八臂螺旋天线,它的具体参数如下:
螺旋臂长度:λC/2
螺旋高:0.27λC
螺旋直径:0.146λC
螺旋臂直径:0.006λC
螺旋臂旋转度数:180°
螺旋中心距底板距离:λC/4
其中λC表示中心频率对应的波长。最后得到该天线的实测结果如图 3、图 4所示。图 3(a)中的曲线1表示在HP8510B矢量网络分析仪上测得的四臂螺旋天线的驻波比特性曲线,为了便于比较,在同样条件下测得的八臂螺旋天线驻波比由曲线2给出,可见八臂螺旋能明显地展宽天线的频带;图 3(b)表示在相同的仪器上测得的史密斯阻抗圆图。此处我们根据要求将天线的频带设计在14%,而事实上可以做得更宽。图 4(a)和(b)分别为工作频率取0.93fc和1.07fc(即图 3(a)中的标记2和3)时,由频谱仪测出的远区辐射方向图,它们的半功率宽度分别达到140°以及145°左右,这么宽的波束是其它形式的天线很难达到的。
来源:21IC电子网