• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 基于TalusVortexFX的32/28纳米节点设计方案

基于TalusVortexFX的32/28纳米节点设计方案

录入:edatop.com     点击:

在过去,一直是通过提供多线程功能来增强物理实现工具的容量和性能。在有些情况下,这些功能是被"生搬硬套"到的传统工具上,效果有限。相较之下,Talus1.2中所有工具均完全内置有自带的多线程功能。

前文已说过,多线程对工具的作用十分有限;基于阿姆达尔定律(Amdahl’slaw)等计算机科学定律,(伴随在其核心运行的每个线程)线程的数量越来越多所起到的效果却越来越小。简单来说,就是告诉我们,任何程序的加速均会受到并行数量的限制(也就是说,程序的最长序列片断关系到程序的其它部分),如图8所示。

图8.阿姆达尔定律反映了多线程的局限性。

对于被用来创建ASIC/ASSP/SoC器件的物理实现工具来说,这些工具的并行部分约占到了50%到75%。就如我们从图8中所看到的"甜蜜点(sweetspot)",而在best-case情景下,使用8-10个处理核心,只可获得约3倍的加速。

幸运的是,通过将物理实现任务分发到多台机器上就可以克服阿姆达尔定律所定义的局限性。如图9所示,采用全新DistributedSmartSync(分布式智能同步)技术的TalusVortexFX提供了与贯穿物理实现流程所有步骤(时钟树综合除外,这种方法对它起不了什么作用)的智能同步技术相结合的独特分布式管理。微捷码将这款最新解决方案称为TalusVortexFX,它以DistributedSmartSync技术增强了Talus1.2。

技术增强的TalusVortexFX流程的高级视图

这种技术背后的概念是:对一个更大型的设计或模块进行智能分割、将设计分区分散到整个网络的服务器上执行设计实现、最后在主要流程阶段自动对这些设计实施重新同步。本质上,这让设计师能够处理更大型设计,同时仍可获得与他们之前在规模更小得多的电路模块上所实现的相同的吞吐量(即每天单元数)。甚至在使用同等数量的内核/线程的时候,这种分布式方案的处理速度也较最佳多线程扁平流程要快上2-3倍。

图10.仅多线程vs.多线程+分布式处理

物理实现工程师的生产率一般是根据每天单元数来进行衡量。使用最好的常规流程,可能获得的最大生产率一般约为每天100万个单元。相较之下,TalusVortexFX的分布式处理技术可将这一数字提高到每天200-500万个单元,这种技术贯穿整个流程(对于只布局的门极电路而言,生产率可获得更高的提升,这是一些用户会关注的另一指标)。

还值得关注的是:TalusVortexFX为物理实现团队提供了在设计周期早期执行快速的假设分析的能力,实现了最佳的面积、速度和功耗间折衷权衡。但还有一点也不容忽视:DistributedSmartSync技术完全增强了现有Talus1.2技术,进而促进了这款产品的快速采用。

至于保留现有硬件资源的投资方面,DistributedSmartSync技术让用户现有的内存为32GB和64GB的设备能够得到充分利用。若未采用这项技术而转向32/28纳米节点设计,那么将要求用户的设备要升级为内存128GB或256GB的设备,碰到大型服务器场的话这可能需耗费几百万美元。

除了通过缩短设计周期、提高工程团队使用扁平方法的能力(在不必添加额外资源的前提下)、提高工程团队的生产率以外,TalusVortexFX的使用通过缩短上市时间(赢利时间)还解决了如何满足日益紧张的开发时间表这一问题。

总结

进行32/28纳米及更小尺寸技术节点设计时会遇到许许多多的问题,包括低功耗设计、串扰效应、工艺变异以及操作模式和角点数量的显著增加。微捷码的TalusVortex1.2物理实现环境完全解决了所有这些问题。

此外,32/28纳米节点设计尺寸及复杂性的不断提高还造成了工程资源(不扩大团队规模而取得更大成果)、硬件资源(无需升级主板、增加内存或购买全新设备,使用现有设备和服务器场来处理更大型设计)和如何满足日益紧张开发时间表等方面相关问题的增加。为了解决这些问题,通过TalusVortexFX创新性的DistributedSmartSync™(分布式智能同步)技术,TalusVortex显著地提高了其容量和性能。

来源:Magma

上一篇:安防视频监控无线3G在旅游景区中的应用
下一篇:GPRS与CDPD的技术比较及区别

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图