• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 一种基于FPGA的UART电路实现

一种基于FPGA的UART电路实现

录入:edatop.com     点击:

摘要:UART 即通用异步收发器,传统上采用多功能的专用集成电路实现。但是在一般的使用中往往不需要完整的UART 的功能,比如对于多串口的设备或需要加密通讯的场合使用专用集成电路实现的UART 就不是最合适的。本设计使用Xilinx 的FPGA 器件,只将UART 的核心功能嵌入到FPGA 内部,不但实现了电路的异步通讯的主要功能,而且使电路更加紧凑、稳定、可靠。

1 引 言

UART 即通用异步收发器,他广泛使用串行数据传输协议。UART 功能包括微处理器接口、用于数据传输的缓冲器(Buffer)、帧产生、奇偶校验、并串转换,用于数据接收的缓冲器、帧产生、奇偶校验、串并转换等。UART的特点是一个字符接一个字符传输,并且传送一个字符总是以起始位开始,以停止位结束,字符之间没有固定的时间间隔要求。每一个字符的前面都有一位起始位(低电平,逻辑值0) , 字符本身由5~ 8 位数据位组成,接着字符后面是一位校验位,最后是停止位(1 位,或1 位半,或2位) , 停止位后面是不定长度的空闲位。停止位和空闲位都规定高电平(逻辑值1) , 这样可以保证起始位开始处有一个下降沿。在一般的使用中往往不需要使用完整的UART功能,比如对于多串口的设备或需要加密通讯的场合使用UART 就不是最合适的。如果设计上用到FPGA ?CPLD器件,那么就可以将所需要的UART 功能集成到FPGA内部,从而使整个设计更加紧凑、稳定、可靠。分析UART的结构,UART 主要由数据总线接口、控制逻辑和状态接口、波特率发生器、发送和接收等部分组成。在本设计中,固定数据帧格式为: 开始位(1 b 低电平)、8 位数据位、偶校验、停止位(1 b 高电平) , 波特率可调。

2 波特率发生模块

设计的UART 的接收和发送按照相同的波特率进行,波特率可以通过接口模块的总线接口进行设置。

UART 收发的每一个数据宽度都是波特率发生器输出的时钟周期的16 倍,即假定当前按照9 600 b?s 进行收发,那么波特率发生器的输出时钟频率应该为9 600×16 Hz.

假定提供的外部时钟为116MHz, 可以很简单地通过总线写入不同的数值到波特率发生器保持寄存器,然后用计数器的方式生成所需要的各种波特率,即分频器。计算公式为: 1 600 000?(16×所期望的波特率) - 1, 如果希望输出10 000 Hz 的波特率,可以得出从总线写入的数值为1 600 000?(16×10 000) - 1= 9 (09H)。

3 发送模块

根据UART 协议的描述,发送逻辑流程如图1 所示。

发送数据由接口模块控制,接口模块给出w rn 信号,发送器根据此信号将并行数据锁存,并通过发送保持寄存器和发送移位寄存器发送并行数据。由计数器no_ bs_sent 控制状态的转移,即数据的发送,计数值为1 时,数据从发送保持寄存器传送到发送移位寄存器,计数值为2时,发送开始位(1 b 低电平) , 计数值为3~ 10, 发送8 位数据,计数器为11, 发送校验位,计数值为12, 发送1 位停止位,计数器随后清零。发送时钟是根据数据传输的波特率产生的,16 倍于波特率发生器产生的时钟。

图1 发送逻辑的流程

发送模块信号:

rst (输入) : 复位端口, 低电平有效;

w rn (输入) : 写控制信号;

din [ 0: 7 ] (输入) : 并行数据输入信号;

clk16x (输入) : 外部时钟信号;

tbre (输出) : 发送保持寄存器空信号, 高电平有效;

t sre (输出) : 发送移位寄存器空信号, 高电平有效;

sdo (输出) : 串行数据输出信号。

用VHDL 语言编写代码,使用Xinlinx 的ISE511 进行逻辑综合,运用Modelsim 7.2 做时序仿真,其结果如图2所示。

图2 发送模块时序仿真波形图

4 接收模块

根据UART 的协议描述,可以画出如图3 所示的接收逻辑流程图。接收逻辑首先通过检测输入数据的下降沿来检查起始位,然后产生接收时钟,利用接收时钟来采样串行输入数据,在缓冲器中作移位操作,同时产生校验位,在第9 位处比较校验位是否正确,在第10 位处比较停止位是否为高,在校验位错误或停止位错误的情况下产生错误指示信号。接收时钟是根据数据传输的波特率产生的,16 倍于波特率发生器产生的时钟。

接收模块信号:

rst (输入) : 复位信号;

clk16x (输入) : 输入时钟;

rdn (输入) : 读锁存信号;

rxd (输入) : 串行数据输入信号;

dout [ 0: 7 ] (输出) : 并行数据输出总线;

fram ing_ erro r (输出) : 帧错误信号;

parity_ erro r (输出) : 校验错误信号;

data_ ready (输出) : 数据接收完毕信号。

图3 接收逻辑的流程

运用Modelsim 712 对接收模块做了时序仿真,其结果如图4 所示。接收时钟与发送时钟相同,接收到一帧串行数据,由接收模块转换为并行输出,并且检验校验位和停止位,产生fram ing_ erro r 和parity_ erro r 信号输出。

图4 接收模块时序仿真波形图

5 接口控制模块

接口控制模块连接控制发送、接收、波特率发生模块,并与外部并行总线相连接,从外部(CPU 或单片机) 接收控制信号(nrst, nw rn, nbdn, nrdn) , 来控制UART 的发送、接收以及内部时钟的生成。在nw rn 有效并且内部信号tbre= ′0′(发送缓冲寄存器空) 时,将数据总线输入的并行数据发送给发送模块数据线din (7: 0) , 执行发送数据功能。在nrdn 有效并且内部信号data_ ready, parity_erro r, fram ing_ erro r 有效时,允许从接收模块读入接收到的数据。波特率发生器和发送模块的并行数据输入端口共用一个数据总线。

6 总体电路综合及仿真

UART 总体电路如图5 所示,分别由上述4 个模块组成。其时序仿真如图6 所示。

图5 UART 总体电路图

图6 UART 总体时序仿真波形图

观察图6, 可以看到串行输出端口sdo 发送一帧数据为"00101011001", 第一位为起始位,8 位数据位,校验位为"0"(偶校验) , 1 位停止位,空闲状态位为高电平。并行输出端口ndout 输出为"00101010", 输入数据帧格式正确,校验位正确。

7 结 语

用FPGA 器件实现了UART 异步收发器的核心功能,可以实现对数据的接收和发送,并可以在接收数据时对其校验位、停止位进行判断,在发送数据时可以形成完整的一帧数据格式。其接收和发送数据的时钟有内部波特率发生器产生,根据预置的分频系数,对外部时钟进行分频,产生需要的接收或发送时钟。将该UART 电路作为一功能块嵌入到一个FPGA 实现的数据采集与处理系统中,成功地实现了和远端的PC 机进行异步串行通信。实验证明该UART 电路简单,工作稳定、可靠,可运用于低端的异步通信。

作者:杨英强 来源:《现代电子技术》

上一篇:基于COM的Matlab参数处理与 像嵌入在VC中的实现
下一篇:基于Si1000的无线M-Bus通信系统

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图