- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
电场耦合式无线供电系统:实现轻松无线充电!
设计自由度高的电极
电场耦合方式的第二个特点是电极薄。可以说,能够减薄到无论多么薄都没关系的程度。因此容易嵌入机器,可支持多种机器。
比如在配备到薄型化要求极高的智能电话上时,只粘贴1.5cm见方、厚5μm左右的电极材料(比如铜箔)即可(图7)。
图7:嵌入智能电话后盖的示例
由于可使用极薄的电极,因此容易嵌入智能电话等。电极不一定非要是四方形,任何形状都可以。
另外,还可制成多种形状。没有必要非制成四方形不可,也可以是三角形、圆形及细长的电极。电极使用的材料也可随意,导电体的话最好,除铜箔外还可使用铝箔、透明电极、薄膜及镀金等材料。因此可以说,在嵌入多种构成及大小的机器时,设计自由度较高。
第三点是电极部分的温度不会上升,这也是很重要的特点(图8)。村田制作所在与客户讨论的过程中,经常谈及热对策的重要性。由于温度不会上升,因此能够将电极部分接近容易受热劣化的电池组来配置。
图8:电极部分的温度不会上升
由于电极部分不会发热,因此即使靠近电池组来配置,电池受热劣化的可能性也很低。
至于电极部分缘何不发热的原因如图5所示,这与提高电压有很大关系。由于将电压提高到了1.5kV左右,电极部分流过的电流只有数mA左右,因此在原理上抑制了发热的致因。
当然,送电模块及受电模块由于配备有电源电路,电源电路的电力损失会变成热,因此仍会发生10~20℃左右的热量(图9)。不过,这一点在设计阶段即可采取对策,比如将送电模块及受电模块远离电池组来配置。(未完待续,特约撰稿人:家木英治,村田制作所技术事业开发本部本部长,乡间真治,村田制作所技术事业开发本部 应用技术商品部 商品企划课 股长)
图9:受电部分的发热可通过设计采取对策
受电模块会因降压电路及DC-DC转换器等发生电力损失而产生热量。不过,可采取远离电池组或配置在容易散热之处等对策。
1 2 3 4 5 6 7 8