• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 下一代互联网体系结构研究现状和发展趋势

下一代互联网体系结构研究现状和发展趋势

录入:edatop.com     点击:

  互联网已成为支撑现代社会发展及技术进步的重要的基础设施之一。深刻地改变着人们的生产、生活和学习方式,成为支撑现代社会经济发展、社会进步和科技创新的最重要的基础设施。互联网及其应用水平已经成为衡量一个国家基本国力和经济竞争力的重要标志之一。随着超高速光通信、无线移动通信、高性能低成本计算和软件等技术的迅速发展,以及互联网创新应用的不断涌现,人们对互联网的规模、功能和性能等方面的需求越来越高。三十多年前发明的以IPv4协议为核心技术的互联网面临着越来越严重的技术挑战,主要包括:网络地址不足,难以更大规模扩展;网络安全漏洞多,可信度不高;网络服务质量控制能力弱,不能保障高质量的网络服务;网络带宽和性能不能满足用户的需求;传统无线移动通信与互联网属于不同技术体制,难以实现高效的移动互联网等等。

  为了应对这些技术挑战,美国等发达国家从20世纪90年代中期就先后开始下一代互联网研究。中国科技人员于20世纪90年代后期开始下一代互联网研究。目前,虽然基于IPv6协议的新一代互联网络的轮廓已经逐渐清晰,许多厂商已开始提供成熟的IPv6互联设备,大规模IPv6网络也正在建设并在迅速发展。但是互联网络面临的基础理论问题并不会随着IPv6网络的应用而自然得到解决,相反,随着信息社会和正在逐渐形成的全球化知识经济形态对互联网络不断提出新的要求,更需要人们对现有的互联网络体系结构的基础理论进行新的思考和研究。近年来国际上已经形成了两种发展下一代互联网的技术路线:一种是"演进性"路线,即在现有IPv4协议的互联网上不断"改良"和"完善"网络,最终平滑过渡到IPv6的互联网;另一种是"革命性"路线,以美国FIND/GENI项目为代表,即重新设计全新的互联网体系结构,满足未来互联网的发展需要。

  本文首先介绍国际下一代互联网体系结构的研究现状,涉及美国和欧洲的GENI[1]、FIND[2]、FIRE[3]以及FIA等计划。然后介绍中国下一代互联网体系结构的研究进展,涉及国家重点基础研究发展("973")计划、国家高技术研究发展("863")计划和中国下一代互联网(CNGI)等项目的研究。在此基础上,本文分析展望未来下一代互联网体系结构研究的发展趋势。

  1 国际下一代互联网体系结构研究现状

  国际上各个国家的下一代互联网研究计划不断启动、实施和重组,其研究和实验正在不断深入。从国家地域方面看,美国、欧洲、日、韩都有其各自的计划和举措;从研究内容方面看,有的关注网络基础设施和试验平台的建立,有的关注体系结构理论的创新;从技术路线上看,有的遵从"演进性"的路线,有的遵从"革命性"的路线。

  1996年10月,美国政府宣布启动"下一代互联网"研究计划。陆续地,一些全球下一代互联网项目分别启动。全球下一代互联网试验网的主干网逐渐形成,规模不断扩大,包括美国的Internet2、欧洲的GEANT2、亚洲的APAN以及跨欧亚的TEIN2等。这些项目的设计大多遵循"演进性"的技术路线。

  另一些研究者认为需要从根本上改变互联网的体系结构,才能彻底解决互联网所面临的诸多难题。于是有了"革命性"的研究路线。

  早在2000年,美国启动了NewArch项目,其目标是"为未来的10到20年开发和评价一种加强的Internet体系结构"。NewArch项目研究了互联网变化的需求,并对一些关键的体系结构问题和思想进行了探索,形成了一系列的报告。但其具体实现方案中仍然沿用了现有互联网技术,仅仅在应用层进行了功能性验证。

  2003年,美国科学基金会(NSF)启动Clean Slate 100*100研究计划,针对"推倒重来,从零开始"的设计方法论、全面的网络框架及网络拓扑设计、网络协议栈设计等3个方面展开研究,计划到2010年实现1亿家庭用100 Mb/s上网。该项目现在已经结束,并未达到预期的目标。此后,美国NSF还启动了FIND、SING、NGNI等研究项目。2005年,美国NSF又启动全球网络创新环境GENI项目,提出了许多新的概念,并引入了OpenFlow作为实验平台。

  2006年,美国NSF再次启动全新互联网设计(Clean Slate Design for The Internet)项目,除了斯坦福大学等高校的团队以外,还有众多工业界伙伴参与。项目目标是通过建立网络互联、计算和存储的创新平台来彻底改造互联网基础设施和服务,其重点是移动计算。

  2006年,日本政府启动新一代网络架构设计AKARI项目。希望重新设计互联网的体系结构。AKARI共分为3个阶段(JGN2、JGN2+、JGN3)建设试验床。

  2007年,欧盟启动未来互联网研究和实验平台计划FIRE。目标是建立欧洲未来互联网实验平台,支持有关解决网络可扩展性、复杂性、移动性、安全性以及透明性问题的新方法研究。

  2009年,美国NSF启动针对网络科学与工程的研究计划NetSE。并把FIND、SING、NGNI等3个项目并入到NetSE,希望通过跨学科、跨领域的联合研究,突破未来互联网体系结构的研究。2010年NSF又设立了未来互联网体系结构计划FIA。

  1.1 全球网络创新环境

  2005年NSF出资3亿美元提出全球网络创新环境(GENI)计划。GENI计划的目的是构建一个全新的、安全的、能够连接所有设备的互联网,以促进互联网的发展,并刺激科技创新,促进经济增长。GENI由两部分组成:研究计划和实验设施。"研究计划"的重点是研究创造新的核心功能,包括要超越现有的数据报、分组和电路交换框架,设计新的命名、寻址和身份识别体系结构,设计内置的网络安全机制和新的网络管理机制,使下一代互联网具有高度安全性和可管理性;"实验设施"的重点是研究能够提供包括传感器和无线移动通信设备等在内的多种接入技术,并能够部署和验证新的体系结构。

  GENI的设计思想中引入了切片化、虚拟化和可编程,按照需要支持的业务类型虚拟地将网络节点设备划分资源和处理能力。

  GENI参考了OpenFlow[4]技术。OpenFlow是一个开放的标准,允许人们在实际网络中运行试验协议,基本思想是:OpenFlow交换机由数据流表、安全通道和OpenFlow协议3个组成部分,网络中的路由和交换设备的最核心的路由和交换信息都存放在"数据流表"里。OpenFlow提出通用的"数据流表"设计思想,每一条"表项"支持规则、操作和状态3个部分。灵活地定义"数据流",同时"数据流表"支持多种远程的访问和控制,从而达到满足各种需求,控制流量的目的。

  GENI项目的发展遵循一种结构化的自适应的螺旋式的过程,包括规划、设计、实现、集成和应用。2009年1月,GENI实现了新的原始的端到端的工作模型的开发、整合和试运行。下一阶段,建立真正的大规模的虚拟实验环境,加强国际合作是其重点。

  1.2 未来互联网设计项目

  未来互联网设计项目(FIND)是由NSF的"网络系统和技术研究计划"(NeTS)于2005年提出的一个长期计划。FIND在网络体系结构各个方面的研究和设计都尽量做到不受到以往的研究思路的影响和束缚,即"Clean Slate Process"。FIND的目标是设计一种全新的满足未来15年社会需求的下一代互联网,其核心功能应安全、健壮、可管理、集成新的网络技术以及新的网络体系结构理论。

  FIND计划初拟分成3个阶段:第1阶段(2006到2008年)关注基础研究,解决互联网安全、命名及路由等基础问题;第2阶段(2009到2011年)提出可能不只一个的网络体系结构方案;第3阶段(2012到2014年)在GENI等实验床上测试和论证。

  2009年4月,FIND发布了新的专家评估报告[5],建议继续FIND项目,并在网络安全、网络管理和项目总体集成方面投入更多研究精力。

  1.3 未来互联网研究和试验项目

  2007年,欧盟在其第七框架(FP7)中设立了未来互联网研究和试验(FIRE)项目。FIRE的主要研究内容包括:网络体系结构和协议的新设计;未来互联网日益增长的规模、复杂性、移动性、安全性和通透性的解决方案;在物理和虚拟网络上的大规模测试环境中验证上述属性。

  FIRE和GENI有着很多的相似之处。它们都关注如何搭建试验环境为理论研究提供证据支持。FIRE也希望通过螺旋式的部署方案,突破地理限制,建立全球性的大规模试验环境;FIRE同样采用虚拟化思想,该技术将独立存在的资源和设施联系起来;FIRE同样也具有联盟和跨学科等特点。

  1.4 未来互联网体系结构计划

  2010年美国NSF设立了未来互联网体系结构(FIA)计划。FIA的目标是设计和验证下一代互联网的综合的新型的体系结构,为期3年(2010到2013年),研究范围包括:网络设计、性能评价、大规模原型实现、端用户应用试验等。FIA资助了4个项目,分别致力于未来网络体系结构研究和设计的不同方向,同时也为集成架构方面有所考虑,为建立综合的可信的未来网络体系结构努力。

  NDN[6]项目致力于使互联网支持不考虑内容存储所在的物理位置,直接提供面向内容的功能。NDN网络将通信的模式从关注于"在哪",例如地址、服务器、端系统,到关注于"是什么",即用户和应用关注的内容。NDN通过命名数据而不是它们的位置地址,把数据作为基础实体。项目重点研究建立NDN网络面临的技术挑战,包括路由可扩展性、快速转发、信任模型、网络安全、内容保护和隐私,以及新的支持这一设计的基础通信原理。

  MobilityFirst[7]项目则致力于对无缝的平滑的移动性的支持,它以支持移动节点间的通信为主,而不再是把对移动性的支持当成互联网连接中的一种特殊情况。这一体系结构使用"全面延迟容忍网络"(GDTN)来提供通信稳定性,关注于移动性和可扩展性的平衡,以及充分利用网络资源来实现移动端点间的有效通信。主要的技术包括分布式的命名服务和延迟容忍的路由和传输等。

  NEBULA[8]项目的名字是拉丁文"云"的意思,它是一个体系结构,其中云计算数据中心是主要的数据存储和计算核心。在这一未来的模型中,数据中心被高速的、可靠的、安全的骨干网络连接在一起。这一项目致力于建立一个以云计算为中心的体系结构。

  XIA[9]项目致力于构建一种未来互联网体系结构,具有以下特点:可信、支持长期更新的多种使用模型、支持长期的技术革新、支持不同网络组成角色间的明晰的接口。XIA体系结构的核心是XIP协议,该协议支持不同类别目标直接的通信。XIA目标主要指内容、服务和端系统3种情况。协议簇将保留TCP/IP协议族的细腰特性,即在中间采用互操作协议定义最简单基础的功能。

1  2  

上一篇:无感知认证方案技术对比:Portal、802.1x以及MAC
下一篇:无感知认证方案技术

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图