• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 光缆线路自动监测系统的应用

光缆线路自动监测系统的应用

录入:edatop.com     点击:

作者:王勇

摘要:随着光纤通信系统的广泛应用,运营商对光缆的维护和管理都提出了更高的要求。本文介绍了光缆线路自动监测系统的组成原理,分析了其应用。

1、应用背景
据统计,我国已敷设光缆的总长度超过了4.05×106km,约7.582×107芯公里,而微波线路长度仅为2×105km,且传输容量远低于光缆线路,可见目前我国信息容量的90%以上是通过光缆线路传送的。

随着光缆数量的增加以及早期敷设光缆的老化,光缆线路的故障次数在不断增加。传统的光缆线路维护管理模式的故障查找困难,排障时间长,影响通信网的正常工作,每年因通信光缆故障而造成的经济损失巨大。如何更加高效的对光缆进行维护和管理的问题就日益突出。

以中国移动某省公司省内干线2005年6月至2006年6月期间线路故障(包括光缆阻断和线路劣化)为例,统计情况如表1所示。

表1 统计情况

\

虽然现有环网保护技术可在一定程度上能继续保证业务的畅通,但可以看出,由于线路维护仍然采取传统的方式维护抢修,线路故障恢复历时均较长,出现业务故障的隐患仍然存在。

因此,实施对光缆线路的实时监测与管理,动态地观察光缆线路传输性能的劣化情况,及时发现和预报光缆隐患,以降低光缆阻断的发生率,缩短光缆的故障历时显得至关重要。

2、光缆线路监测系统的应用
光缆线路自动监测系统是电信管理网(TMN)中传输网管理域的一个子网,是有效压缩全阻障碍历时和及时发现光缆线路隐患的重要技术手段。它利用计算机技术、光纤通信测量等技术,对光缆线路质量、运行等情况进行自动、实时监控和测试。

根据监测对象的不同,一般将监测系统分为两大类:对光缆金属护套对地绝缘电阻的测试和对光纤后向散射系数的测试,前者也称光缆护套对地绝缘自动监测系统,后者称光纤自动监测系统。

2.1 光缆护套对地绝缘电阻自动监测系统
光缆的核心是光学纤维束,光纤束的外围是铝套管,最外层是塑料外护层。长途光缆大部分埋设在地下,外护层难免因各种原因受到损坏,影响通信质量。土壤的水分侵入光缆,进而损坏光纤影响通信。光缆外护套损坏可由光缆铝套管对大地的绝缘电阻值下降来测定。如每公里光缆对地绝缘电阻不得少于2MΩ,维护人员为此定期来测定,分段的用高阻计检测光缆的对地电阻。传统的检测方式虽花费大量的时间来找破损点,但准确度都不高。光缆护套对地绝缘电阻自动监测系统能自动监测光缆的对地电阻状态,节省查找故障时间,大大提高维护光缆的效率。

该系统优点能在外护套质量受到影响时,提供损伤预警,可及时对受损光缆进行修复;自动进行数据采集;系统设备较为简单(与光纤监测相比较);提供定量的故障定位信号,缩短障碍历时。

但该系统在应用时,还存在以下缺点。
(1)由于国内直埋光缆施工时,在金属外护层对地绝缘电阻方面存在较多的问题,而该系统在安装前要求对地绝缘电阻必须符合规定,因此前期改造的工作量很大;
(2)前站安装传感器时,必须打开接头盒,对已开通电路的线路来讲,危险性大;
(3)由于该系统利用直埋光缆金属外护层与大地构成的回路来进行测试和传输数据,不适用于架空光缆线路。

综合以上分析,由于目前迫切需要应用光缆线路自动监测系统的干线均已建设成形,改造困难大,故光缆护套对地绝缘电阻自动监测系统应用的可行性较差。

2.2 光纤自动监测系统
光纤自动监测系统是利用对光纤后向散射曲线的远端测试来实现光缆线路的自动监测。已应用于运营商的部分光缆干线上。一般所言的光缆监测系统即为光纤监测系统。

光纤自动监测系统主要由监测中心和监测站(MS)组成。监测中心又可以分为总监测中心(GMC)、省监测中心(PMC)、区域监测中心(DMC)3个等级。

系统工作原理是对由分光路器所截取的光传输网络收、发信端的一部分光进行光功率测量,所得到的光功率值将定性地说明光缆线路所处的状态及故障现象,一旦确定光缆由故障,监测系统会自动启动OTDR,对接在光开关上的光纤线路进行故障测试,查找故障点。原理图如图1所示。

\
图1 光纤自动监测系统原理图

根据不同的需要,现场监测站可实现在线监测、备纤监测、跨段监测3种测试方式。

光纤自动监测系统近些年的应用和不断的改进完善,已经成为我国干线光缆维护工作中重要的故障定位手段,在全国的干线网的维护中发挥着巨大的作用,但由于技术及其它原因,目前系统本身还存在一定的不足之处。

2.2.1 告警信号的提取
目前,光纤监测系统提取告警信息大致有3种方式:利用分光器提取3%的在用光,通过AIU、ACU进行分析;利用设备的架告警信号;利用设备中继光盘的收无光告警信号。

但这3种方式都存在一定的局限性。
(1)利用AIU方式时,需分流在用系统3%的光功率,这对于光功率富余度较小的中继段来讲不太可行;
(2)利用架告警信号时,监测系统将对该机架所有的告警信号(包括电源告警、设备告警等)进行紧急反应,易形成误告警;
(3)由于不同厂家的中继光盘具有不同数据格式的收无光告警信号,故该方法较难实现,且成本较高。

2.2.2 系统介入的衰耗
由于系统需要介入WDM、Filter等无源光器件,会影响在用系统的收光功率。

2.2.3 缺乏迅速倒换的功能
目前的监测系统只有测试、分析和告警的功能,在光缆发生障碍后仍需等待维护人员到现场进行紧急抢修。没有根本解决即时倒换光路、恢复通信的问题。

2.2.4 监测光纤的数目较少
目前,我国一级光缆干线监测系统一般采用双向四纤监测,即在现场监测站(MS)向两个方向各监测两纤,被监测光纤在光缆中所占比例较小,当光缆发生非全阻障碍时,往往因为阻断光纤不是监测光纤而使监测系统没有产生应有的告警信息。

综合以上分析,光纤自动监测系统虽然还存在一定的不足,但在具有完善的光缆竣工基础资料情况下,应用在干线光缆上是可行的。

3、结束语
对于中国移动而言,线路维护主要采取委托代维方式,没有专业的维护机构。应在一级干线和省内二级干线上逐步使用光缆线路自动监测系统,并结合纤芯自动倒换系统、GPS等现代化手段进一步提高网络的安全可靠性。

在竞争日益激烈的通信市场中,仅有大容量通信能力是远远不够的,竞争的真正核心是服务质量、是保证每一个客户的通信畅通无阻。因此,特别是对干线光纤传输系统装备光纤监测与保护系统和其它通信网络监控保护技术措施具有非常重大的意义。

上一篇:光子晶体光纤光栅的制备方法及其应用
下一篇:波长选择开关机遇来临?ROADM下一步该走向何方?

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图