- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
光纤预制棒制造工艺技术的发展及趋势[详讲]
2011年4月18日消息,目前,已形成光纤光缆全球性大发展的良好气候,美国KMI公司预测, 今后10年,全球光纤光缆需求将持续增长,为适应全球光纤光缆需求的增长,国际上各大光纤生产厂商正进行新一轮的扩产,同时,国内光纤产业的发展势头也很强劲,有的光纤生产企业正在扩产,还将新建几个大型光纤厂。这里,技术路线的选择是很重要的。
一、制造预制棒的"两步法" 光纤工业在70年代兴起。
20多年来,光纤制造商工艺一直在不断发展。由于光纤预制棒制造技术是光纤制造工艺的核心,光纤行业历来用光纤预制棒制造技术来命名光纤制造工艺。按照传统的命名方法,当前光纤技术市场上四种工艺共存,即OVD、VAD、MCVD、PCVD。然而,仅用上述工艺名称简单地表示当前的生产工艺已经是很不全面了。当前商业生产光纤预制棒的汽相沉积工艺都已经发展为"两步法"(Two-step Processes)。图1较为全面地描述了当前商业生产光纤预制棒的工艺,其中,OVD、MCVD等工艺名称仅仅表示生产预制棒的第1步,即生产芯棒(Core-rod/Primary Preform/Initial Preform)所用的工艺,在生产芯棒时,不仅要制造芯也必需制造部分包层,这是为了确保光纤的光学质量,随后,可以把芯棒拉细成很多小芯棒,也可以不拉细,这取决于芯棒的大小。第二步,在芯棒上附加外包层(俗称外包技术或Overcladding),制成预制棒,拉丝之前,可以把预制棒拉细也可以不拉细,这取决于预制棒和拉丝炉的大小。
所以,所谓"两步法"并不局限于两步,光纤预制棒的光学特性主要取决于芯棒制造技术;光纤预制棒的成本主要取决于外包技术,因此,芯棒制造技术加上外包技术才能全面说明当前光纤预棒制造工艺的特征。参见图1。
这里要说明的是:
●图1中的芯棒技术名称和套管法,已经是众所周知,此外无须赘述。
●"SOOT"法,国外文献中常用"soot process"来泛指OVD、VAD等火焰水解外沉积工艺。在本文中我们称之为:SOOT外包技术,而不用OVD术语,以示与OVD芯棒技术的区别,该技术在美国和日本各公司已广为应用。
●等离子喷涂(Plasma Spray),是指用高频等离子焰将石英粉末熔制于芯棒上制成大预制棒的技术,由阿尔卡特发明、使用。
●溶胶--凝胶法(Sol-gel)用作外包技术,是美国朗讯发明的,包括两条途径。其一,先用溶胶--凝胶法制成合成石英管作为套管,再用套管法制成大预制棒;其二,先用溶胶--凝胶法制成合成石英粉末,再用高频等离子焰将合成石英粉末熔制于芯棒上制成大预制棒的技术,所以从本质上看它应属于SOOT或等离子喷涂法。
二、芯棒制造工艺的发展趋势
2.1各种化学汽相沉积工艺从1980年到2000年的发展
MCVD是最早成熟的工艺,早期的多模光纤主要是该工艺生产的,进入80年代以后,伴随着常规单模光纤(SMF)的成熟,OVD、VAD在光纤市场的份额迅速增加,美国康宁和日本各公司均停止使用MCVD工艺,MCVD的市场份额迅速下降,OVD、VAD工艺的份额迅速增加。但是,MCVD工艺不断改进,纳入了多项新技术,因此迄今仍占约1/3的市场份额。表1列出4种化学汽相沉积工艺从1980年到2000年所占市场份额的变化。 表1 各种化学汽相沉积工艺所占市场份额(%)的变化(1980年--2000年) 注:这里所述的各种工艺所占的份额均是以芯棒的制造工艺来划分,不考虑其外包工艺。
2.2 MCVD的发展
●最初的MCVD是在一台车床上依次进行包层沉积、芯沉积、熔缩成预制棒,这是典型的"一步法"。目前,阿尔卡特已经将沉积与熔缩分开,在沉积之后,用另一台专用车床熔缩成棒,并用石墨感应炉代替氢氧焰做热源进行熔缩成棒。
●采用大直径合成石英管代替天然水晶粉熔制成的小直径石英管做为衬底管,目前在生产上用的合成石英衬底管外直径约为40mm,沉积长度1.2~1.5m。 "
●最重要的是,用各种外沉积技术取代了套管法来制作大预棒,例如用火焰水解外包和等离子外包技术在芯棒上制作外包层,形成了MCVD与外沉积工艺相结合的混合工艺。这此新技术弥补了传统MCVD工艺沉积速率低、几何尺寸精度差的缺点,降低了成本、提高了质量、增强了竞争力。
●开发低成本、高质量、大尺寸的套管的制造方法(如溶胶--凝胶法,OVD法),供套管使用。
2.3 VAD工艺的发展
●70年代的VAD工艺,芯和包层同时沉积、同时烧结,号称预制连续制造工艺。
●80年代的VAD工艺是先做出大直径芯棒,然后把该大直径芯棒拉细成多根小芯棒,再用套管法制成预制棒,从"一步法"发展到"二步法"。
●90年代改成用SOOT外包代替套管法制成光纤预制棒。
●90年代以来,使用VAD的生产厂家增多了,除了日本古河、滕仓之外,信越、日立、三菱、昭和等公司从日本NTT获得了使用VAD工艺生产光纤的许可,并实施了再开发,实现了商业化VAD工艺,朗讯也从住友公司购得了使用VAD工艺的许可,另外还与住友在美国建立了VAD法的合资光纤厂,从而有机会多年观察VAD光纤生产,此后,朗讯将VAD工艺引进到它的亚特兰大光纤厂。美国SpecTran公司在购买ENSIGN-BICKFORD公司的资产的同时,也获得了VAD工艺。顺便提一下,SpecTran公司已在1999年末被美国朗讯购并。
2.4 OVD工艺的发展
●从单喷灯沉积到多喷机同时沉积,沉积速率成倍提高。
●从一台设备一次沉积一根棒发展到一台设备同时沉积多根棒。
●从依次沉积芯、包层连续制成预制棒的"一步法"发展到"二步法";即先用陶瓷棒或石墨棒为靶棒,只沉积芯材料(含少量包层)做出大直径芯棒,经去水烧结后,把该大直径芯棒拉细成多根小直径芯棒,再用这些小直径芯棒为靶棒来沉积包层,制成光纤预制棒,大大提高了生产率、降低了成本。
2.5 PCVD工艺的发展
●与MCVD一样,当前的PCVD工艺也采用了大直径合成石英管代替天然水晶熔制的石英管做为衬底管。
●荷兰POF公司已开发了四代PVCD工艺,衬底管内直径从最初的16mm增大到60mm以年,沉积速率提高到2~3g/min,沉积长度1.2~1.5m。
●目前仍是用套管法制做成大预制棒,但一根套管就重达几公斤。
●原则上与MCVD一样,也可形成PCVD与外沉积工艺相结合的混合工艺,但迄今未见报道。
2.6 各种芯棒工艺的比较
各种芯棒工艺生产同一种光纤产品的生产率有很大差别;生产特定品种的光纤将要求采用最适合的芯棒工艺,鉴于在最近的将来,国际上使用最多的光纤仍是SMF。因此,图2示出各种工艺生产SMF的最新经济分析结果。该分析比较了生产100万km光纤所需的设备数量;其中MCVD需6~12台(套);VAD需4~6台(套);OVD需1~2台(套)。显然,MCVD要求较多的机械设备投资。不过,各种设备的单价是不同的,以MCVD设备的单价最低。所以,设备总投资的差异不会如设备数量的差别那么大。
2.7 小结
从表1可见,MCVD芯棒占世界市场的份额连续减少,其它3种工艺则逐年增加。 据预测,今后10,多模光纤(MMF)和非零色散光纤(NZDSF)的市场份额都将持续增加,SMF的市场份额将有所下降,因为MMF和NZDSF的传输特性对径向折射率分布(RIP)的缺陷很敏感。在芯棒制造过程中要精确控制RIP,在这方面,MCVD、尤其是PVCD与OVD、VAD相比具有明显优势。NZDSF和MMF市场的扩大,意味着更多地应用MCVD、PCVD工艺。用OVD工艺的美国康宁和用VAD工艺的几家日本公司如住友、藤仓、古河、信越等,在80年代曾放弃了MCVD,据报道,当前,可能考虑在其工厂中重新起用MCVD或引进PCVD。
1 2
上一篇:应用于BT下载的两种交换机限速方式
下一篇:详解光纤FC存储交换机常见问题