- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
垂直分层空时码系统信号检测算法的研究
O 引言
在非视距的移动通信环境下,设计传输速率非常高、又能提供好的服务质量和较大的服务范围的通信技术,对设计人员来说是一个挑战。多输入多输出的MIMO(MultipleInput Multiple-Output)技术指的是利用多根发射天线和多根接收天线进行无线传输的技术,使用这种技术的无线通信系统即为MIMO系统。MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,因而对于它的研究已经成为通信理论研究的前沿领域。
MIMO技术的实质是为无线系统提供空间复用增益和空间分集增益。空间复用技术可以大大提高信道容量,而空间分集技术则可以提高信道的可靠性,降低信道的误码率。
垂直分层空时码系统(V-BLAST)是贝尔实验室提出的一种基于多输入多输出(MIMO)传输方式的空时码系统,它是空间复用技术的代表。
V-BLAST结构,就是将待发射的数据流分解为多个并行子数据流,对各路数据流独立地进行编码、调制与映射到其对应的发射天线上,在接收端采用检测算法结合消除干扰等技术将多路子数据流分离。
一般来讲,V-BLAST系统以部分分集增益为代价来换取高频带利用率。由于V-BLAST无法获得最大分集增益,接收端在检测信号时选用的检测算法对提高整个系统性能至关重要。本文对V—BLAST系统中的两种检测算法进行了深入研究,通过仿真结果分析它们的性能,并对这两种算法的适用性做了比较。
1 传统的接收端检测算法
MIMO信号检测技术有多种算法,最优的算法是最大似然(ML)译码算法,但ML算法的复杂度随着天线数及调制阶数的增加呈指数增长,无法实用,故提出了各种简化的算法。其中常用的检测算法包括迫零(ZF)线性算法和最小均方误差(MMSE)线性算法。
假设MIM0信道是平坦衰落的,则接收机在t时刻收到的信号向量表示为:
其中,rt表示nR×1的接收信号向量,H是nR×nr维信道响应矩阵,xt是nT×l的发送信号向量,nt是nR×1的AWGN噪声向量,其中每个分量都是均值为0,方差为σ2的相互独立的正态分布随机变量。
1.1 ZF算法
ZF是最简单的一种线性检测算法,是用线性变换矩阵G左乘接收矢量rt,从而完全或部分消除其他天线干扰。
G为H的Penrose-Moore逆(也称为广义逆)。假设信道矩阵可逆的前提下,接收到的信号向量估计值为:
为了保证广义逆的存在,nT必须小于等于nR,否则HHH为奇异阵,它的逆不存在。
ZF算法虽然能使其它天线的干扰为零,却存在着放大噪声的缺点,所以又提出了基于MMSE准则的检测方法。
1.2 MMSE算法
MMSE算法是基于接收向量rt来选择矩阵wMMSE(wMMSE是nT×nR的线性组合系数矩阵)使均方误差最小化,即:
根据正交原理可得最优解为:
该算法可以最小化由于噪声和其它天线的干扰造成的误差,接收到的信号向量估计值可以表示为:
其中,σ2是AWGN的方差,InT是σ2→0的单位矩阵。
从ZF算法和MMSE算法中可以看出,ZF算法虽然能使其他天线的干扰为零,但是由于噪声前乘上了因子G,噪声被放大,所以检测性能比较差。MMSE算法并没有完全消除其他天线的干扰,而是在降低其它天线干扰和噪声增强之前取得了折衷,使得总的误差率最小。如果信噪比很高时,即σ2→0,则MMSE算法可以简化为ZF算法。
无论ZF算法还是MMSE算法,其实质都是基于信道矩阵求逆的方法,为了使信道矩阵求逆有唯一解,就必须要求接收天线的数目大于或者等于发送天线的数目。
作者:贾芬 王华奎 来源:山西电子技术