• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > OFDM系统仿真与分析

OFDM系统仿真与分析

录入:edatop.com     点击:

(1)有用符号持续时间

有用符号持续时间T对子载波之间间隔和译码的等待周期都有影响,为了保持数据的吞吐量,子载波数目和FFT的长度要有相对较大的数量,这样就导致了有用符号持续时间的增大。在实际应用中,载波的偏移和相位的稳定性会影响两个载波之间间隔的大小,如果为移动着的接收机,则载波间隔必须足够大,这样才能忽略多普勒频移。总之,选择有用符号的持续时间,必须以保证信道的稳定为前提。

(2)子载波数

子载波数目越多,有用信号越平坦,带外衰减也快,越接近矩形,越符合通信要求,但子载波数目不能过多,越接近矩形的结果对接收端的滤波器要求越高(只有理想滤波器才能过滤,否则就造成交调干扰)。因此在子载波数目的选择上要综合考虑传递信息的有效性和可行性。

子载波数可以由信道带宽、数据吞吐量和有用符号持续时间T所决定:

N=1/T

子载波数可以被设置为有用符号持续时间的倒数,其数值与FFT处理过的数据点相对应。

(3)调制模式

可以通过改变发射的射频信号幅度、相位和频率来调制信号。对于OFDM系统来说,只能采用前两种调制方法,而不能采用频率调制的方法,这是因为子载波是频率正交,而且携带独立的信息,调制子载波频率会破坏这些子载波的正交特性,这是频率调制不能在OFDM系统中采用的原因。

短波通信中可以采用MPSK,MQAM的调制方式。正交幅度调制要改变载波的幅度和相位,他是ASK和PAK的结合。矩形QAM信号星座具有容易产生的独特优点。此外,它们也相对容易解调。矩形QAM包括4QAM,16QAM以及64QAM等,因此每个星座点分别所对应的比特数量为2,4,6。采用这种调制方法的步长必须为2,而利用MPSK调制可传输任意比特数量如1,2,3,分别对应2PSK,4PSK以及8PSK,并且MPSK调制的另一个好处就是该调制方案是等能量调制,不会由于星座点的能量不等而为OFDM系统带来PAPR较大的问题。

3系统仿真结果

根据OFDM的基本原理,利用Matlab编写的系统仿真程序,仿真参数设置为:每信噪比条件下传输1 000个OFDM符号,共有64个子波,FFT/IFKT点数为64,循环前缀长度为3μs,基带调制模块选择为MPSK或者MQAM方式,多普勒频移为200 Hz,通过小尺度衰落信道模型进行仿真。在上述前提条件下,仿真结果如下:

3.1 BPSK和QPSK仿真结果与分析

由图3,图4误码率曲线图可以看出,在只有高斯白噪声的情况下,BPSK和QPSK两种调制方式下,随着信噪比的不断增大,误码率在不断地减小,而且输入信号的信噪比越大,影响越明显。究其原因,主要是随着信噪比的增加,噪声功率有所下降,因而误码率也随之下降。

由图3,图4中还可以看到,由于多径传输引起频率选择性衰落的存在,在BPSK和QPSK中对误码率产生了比较大的影响,严重地影响了系统的性能。尤其是在QPSK中,影响更为突出,更为明显一些。由此可见,BPSK在性能方面稍好于QPSK。

3.2 16QAM和64QAM仿真结果与分析

由图5,图6误码率曲线图可以看出,相同点是在只有高斯白噪声的情况下,16QAM和64QAM两种调制方式随着信噪比的不断增大,误码率在不断减小,不同的是在同一信噪比下,16QAM的误码率明显比64QAM的误码率低。

由图5,图6还可以看出,加上频率选择性衰落后,在16QAM和64QAM中频率选择性衰落对误码率的影响也是比较大的,而且输入信噪比越大,对误码率的影响也就越大。

由此可见,16QAM在性能方面稍好于64QAM。

所以,综合以上实验结果,可以清晰地比较出两种调制方式,即MPSK和MQAM的优缺点。

由仿真所得的误码率曲线图可以看出,在相同信噪比条件下,采用BPSK和QPSK调制方式比采用16QAM和32QAM调制方式的误码率要小,但是当M比较大时,性能不如QAM调制方法的好。每个子信道可采用不同的调制方式,选择时要兼顾数据速率、频谱效率以及传输的可靠性,以频谱利用率和误码率之间的最佳平衡为原则,采用自适应技术,特性较好的子信道可采用效率较高的调制方式,而衰落较大的子信道选用效率较低的调制方式,选择满足一定误码率的最佳调制方式可以获得最佳的频谱效率。

4结语

正交频分复用(OFDM)以其独特的优点,在无线接入和移动高速传输中的应用前景非常广泛,是第四代移动通信的核心技术。在进行OFDM系统开发之前,系统的仿真是必要的,可以优化整个系统的参数和指标,缩短开发周期。本文讨论了OFDM系统在不同调制方式下的性能,通过应用Matlab软件,建立OFDM系统模型,运用了四种不同的调制方式,对系统进行性能分析,比较其优缺点,应用时可以根据实际需要找到最适合条件的、最优化的系统。但是在具体的设计过程中,还有许多更复杂的问题,尤其是同步问题,需要进一步解决参数的进一步优化及如何与高效信道编码技术相结合的问题,从而使OFDM更加适应未来通信发展的需要。

 

来源:维库开发网

上一篇:浅论无线通信防雷接地工作
下一篇:同运营商两网间路由优化势在必行

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图