• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 基于Simulink的高速跳频通信系统抗干扰性能分析

基于Simulink的高速跳频通信系统抗干扰性能分析

录入:edatop.com     点击:

3 高速跳频通信系统抗干扰性能分析

3.1 抗宽带噪声干扰能力分析

宽带噪声干扰是指干扰信号能量加到目标电台所适用的整个频谱带宽上,也被称为全频段干扰或拦阻式干扰。宽带噪声干扰是多信道干扰,主要不足在于它所产生的干扰功率密度很低,因为有限的干扰功率被扩展得很宽,因此不能像部分频段干扰那么有效。

宽带噪声干扰的仿真模型如图7所示。

用一个调制频率f=200 MHz的正弦波将高斯白噪声信号调制到200 MHz频段上,这个宽带干扰的频谱图如图8所示。为了更好地进行分析,分别在f=200 MHz,50 MHz,5 MHz,0.5 MHz四个频率点上进行仿真。经过仿真,并将不同信干比下的误码率曲线绘制在同一幅图像上,得到的结果如图9所示。
    战场上电磁环境非常复杂,10-2这一数量级的误码率被认为是可以接受的,许多用于战术层次的装备误码率设计值为10-2。因此,较之为低的误码率被认为是成功的抗干扰。从图上可以看出,高速跳频通信系的抗干扰性能与被干扰的频段有关,越接近跳频频带的中心抗干扰性能越强。对于干扰机而言,在接收端信号的能量只有达到相当的强度(数倍乃至数十倍于信号)才能有效达成干扰,必须采取增大发射功率和缩短干扰距离的方式。对于高速跳频而言,宽带噪声干扰虽然功耗大,干扰效率较低,但只要频段覆盖准确,干扰距离和功率达到要求,仍然不失为一种有效的干扰手段。

3.2 梳状干扰

梳状干扰就是在预干扰的频带内施放多个窄带干扰信号,特点是不需要复杂的侦察检测系统,适用于干扰各种通信系统,其模型如图10所示。

采用7个不同频率的正弦信号将7个高斯噪声调制后相加来模拟梳状干扰。模块图如图11所示。

载波的频点分别是200 MHz,175 MHz,150 MHz,125 MHz,100 MHz,50 MHz,40 MHz,其频谱图如图12所示。

先后对在7个频点(200 MHz,175 MHz,150 MHz,125 MHz,100 MHz,50 MHz,40 MHz)调制的高斯噪声和10个频点(250 MHz,200 MHz,175 MHz,150 MHz,125 MHz,100 MHz,75 MHz,50 MHz,40 MHz,20 MHz)调制的高斯噪声进行仿真,得到两条信干比和误码率的对应曲线,如图13所示。

从图13上可以看出,对高速跳频通信系统而言,梳状干扰的影响远大于宽带干扰。梳状干扰的频点越多,所占的带宽就越大,跳频通信误码率越高,干扰效果越明显。

3.3 其他干扰

瞄准式干扰难以捕获跳频信号的瞬时载频,所以很难达到干扰效果,其他干扰手段也存在类似问题。对跳频通信系统能够产生良好干扰效果的是跟踪式干扰。跟踪式干扰是建立在对敌方跳频通信信号的侦察、处理的基础之上的。只有通过提取跳频信号的瞬时频率、信号功率等参数,发射一个具有相同信号特征的干扰信号,才能达到干扰目的。通常,接收机、干扰机、发射机满足图14所示的位置关系。

为了使干扰有效,必须满足:

式中:c是电波的传播速度;Tpr是侦察处理时间;Td是信号驻留时间;η为小于1的常数。

由图13可知,实际有效的干扰时间是:

所以,在敌方跳速和干扰机与通信机几何分布都不变的条件下,只有将信号处理时间缩短到敌方信号驻留时间以内,才能达到有效干扰,这个时间越短,有效干扰时间就越长,干扰效果越好。

对于高速跳频通信系统而言,信号驻留的时间非常短。美军JTIDS信号驻留时间只有13μs,本文采用的模型信号驻留时间为1/40 000 s(25 μs),对于目前的技术状况来看,通信侦察机和干扰机的处理时间远远大于这个时间(毫秒量级),不能达到有效干扰的目的,一旦跳频速率达到每秒一万跳以上,跟踪式干扰就只能在理论上成立,故本文只做理论分析。

4 结 语

通过Simulink对高速跳频通信系统进行了建模和仿真,达到了预期的效果。本文分析结果可以为今后的高速跳频通信的仿真和应用研究提供良好的借鉴。

作者:魏玮,张海勇,王睿 海军大连舰艇学院   来源:现代电子技术

上一篇:捷思锐全新推出中小型企业语音通信系统及解决方案
下一篇:IMS网管系统实现全业务设备共管

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图