- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于ARM9的快速对星装置设计与实现
0 引 言
大中型卫星站均具有相应的、完善的天线跟踪伺服系统,天线伺服跟踪系统依据信标信号强弱,决定天线转向,驱动天线旋转,达到准确对星。随着通信技术和电子技术的发展,小型卫星站如车载站、便携站受机动性能和便携性能的局限,不可能采用大中型卫星站才能使用的伺服跟踪系统,采用不同原理,开发适用于小型卫星站天线的对星装置,具有现实意义。
1 系统概述
该装置通过GPS采集地理信息、电子罗盘采集姿态信息,根据GPS采集的地理信息,结合通信卫星位置,计算出对星所需要的标准方位、俯仰、极化参数,同时计算出当地、当年磁偏角数据;通过采集电子罗盘数据,得到初步方位、俯仰、极化数据,其中俯仰和极化均为天线实际指向值,但是方位值是以磁北为标准测量值;通过GPS得到的磁偏角数据,对从电子罗盘得到的以磁北为标准的方位值进行修正,得到比较准确的、以真北为标准的真实方位数据。其系统结构如图1所示,其中基于EVC4平台的多线程应用程序流程结构如图2所示。
2 硬件设计
本装置在设计上,选择S3C2440作为主控制器构成硬件平台,利用其丰富的外部接口和高速处理能力,达到实时采集数据、及时处理数据、快速传输数据、不附加额外接口设备的目的。由于该装置需要测量的参数多,GPS、电子罗盘统一采用RS 232接口,保证了测量数据精度和接口一致性。供电统一采用+5 V锂电池电源供电。
3 软件设计
本装置采用ARM9作为主控制器,以Windows CE.net操作系统作为系统平台,使用EVC4开发环境作为开发工具,软件采用多线程结构,MFC和API编程技术,实时采集传感器数据,计算修正方位值,达到准确对星的目的。
3.1 总体程序设计
本装置程序采用多线程结构,在主线程(用户接口线程)的基础上,增加两个辅助线程(工作者线程),辅助线程负责处理数据采集,主线程负责界面响应、数据融合、数据显示。线程处理采用API,而不采用MFC编程,增加了程序的通用性。程序中还使用Suspend-Thread挂起线程、ResumeThread恢复线程、Exit-Thread退出线程。
线程同步采用临界区域(也称关键区域,即CRITI-CAL SECTION)措施,首先用CRITICAL_SEC-TION申明一个全局变量,再调用InitializeCriticalSec-tion初始化,使用EnterCriticalSection进入关键区域,使用LeaveCriticalSection离开关键区域,使用Delete-CriticalSection函数删除关键区域。其关键部分代码如下:
作者:伍文平,王小兵 新疆移动通信公司 来源:现代电子技术