- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
5G之路:下一代蜂窝通信的主要特点和所需的主要技术
强实时(hard real-time)是指处理器在已知最坏(决定性的)情况延迟下,可以非常快速地切换以解决一件新的重要事件。该最坏情况延迟通常都只有几纳秒,使来自系统其他部分的中断能够得到发现并迅速采取行动解决。第一层LTE高级Pro和5G调制解调器的任务控制将处理多载波和很高的数据速率。因此,处理器必须以很高的时钟脉冲频率运行,并能够在很多任务之间很快速地切换并处理外来事件。诸如Wi-Fi的未授权载波提供的数据和数据包速率比LTE更高,将这些不同的载波结合和控制需要一个专门的处理器。带有11级流水线的Cortex-R8可以被快速计时,以提供所需的性能。流水线是"乱序的",这意味着就算有些指令在等待来自较慢外部存储系统的数据时,也可以继续处理,这在很大程度上减少了流水线的"故障",并提供尽可能最好的性能。
Cortex-R8也加强了紧密耦合存储(TCM),允许快速存储中存在更多的代码和数据,这样在访问重要程序和数据时不会存在延迟。不同于高速缓存是由处理器管理的,紧密耦合存储是由开发人员管理的,这样重要的指令和数据结构都始终能够立即获得。在调制解调器内有一些非常关键的实时程序,而其他程序不是那么重要,可以在后台运行。
Cortex-R8使多达4个处理器能够集成到一个单一致的集群。就调制解调器而言,这些处理器通常是以不对称的处理模式运行的,以获得最佳效率。它能够在手机处于空闲模式时关闭处理器电源,并只有当吞吐量上升时才接通额外处理器的电源,这样可以极大地延长电池寿命。这一可配置性也使得如今的开发商能够创建不同的调制解调器,通过对软件的单一投资和可扩展的性能,满足不同LTE类型的需求。
Cortex-R8可在诸多的界面接口中灵活选择,从而转向其他调制解调器系统。用于控制外部硬件和加速器的专用接口的控制延时最低,以确保在复杂系统中尽可能地实现最佳性能。
但是,Cortex-R8并不仅仅用于调制解码器设计。它提供的行业领先性能也适用于企业存储产品,包括HDD和SSD及其他要求可扩展性的嵌入式实时平台。Cortex-R8实施新的错误检测、更正和控制方案,以尽可能地确保可靠性。
提供下一代移动宽带体验
和5G全新优化及高效率的空中接口一样,支撑5G基础设施要求的改进型网络必须能够简化管理、并创建管理工具协调层(orchestration layer),这个协调层的作用是简化下层硬件和软件的复杂性。
全新5G基础设施的成功部署需要将不同设备组合。根据地理条件,有可能需要诸如云端无线接入网(Cloud RAN)、分散式内容分发、可扩展性控制网络和自适应天线阵列等技术。以云端无线接入网为例,该新技术颠覆力非常巨大,当多个基站单元和相关的控制网络共同整合到"云端"时,可以提供云端无线接入网。
为了满足云端无线接入网、分散式内容分发和可扩展性控制网络中这些全新平台的需求,我们已经通过使用一些重要的新兴技术取得了重要的进步:
软件定义网络(SDN)是一种提供网路可扩展性连接和简化旧的传统网络的新方式。SDN是由开放网路基金会(Open Networking Foundation)初步开发的一套标准,该标准通过将控制平面和数据平面分开提供网络功能的抽象层。网络管理和运营可以集中进行,而不是分散到不同的网络层和网络箱。通过简化的抽象软件层进行集中控制带来了诸多益处,如降低了运营成本、提高了自动化、控制、灵活性、敏捷性和应用创新。SDN将会改变设备连接到网络基础设施的方式,而且接入节点同聚合节点之间的连接方式也会相应地发生改变。 网络功能虚拟化(NFV)允许传统功能从所有权硬件防火墙转移到更标准化的服务器、交换器和存储元件。当这些新功能应用于软件,它们可以轻易地应用于数据中心、网络节点或用户端的平台,以充分利用全球网络效率。因此,NFV的益处包括通过更少的依赖所有权和专用硬件来降低资本支出(CapEx)和运营成本(OpEx)。由于更快的配置、测试和整合,使用NFV可以加速市场实时服务。为了支撑诸多延时敏感的5G功能和终端使用案例,NFV的执行必须与优化网络卸载能力配对,也须同诸如移动电子数据收集设备计算(Mobile Edge Compute)技术相配对,这些技术将这些虚拟化的网络功能尽可能贴近接入网络的电子数据收集设备,以避免网络基础设施的过度转变。 分布式智能。通过支持网络内更多的分布式智能,可以通过云端已经调部署的可用资源分布基本的决策点。使用工作负荷优化的硬件和软件来确保网络内各布点的网络、存储和计算功能的实现。工作负荷优化硬件以高度集成的SoCs为基础,具有异构处理能力,这使得该硬件在网络内可以变得智能,即使是缩减到最高功率和形状因数强迫区位。普通的软件平台能够允许开发者和IT用户更快地调配服务。 存储。随着5G网络和服务的发展,我们也会看到存储直接融合到基础设施网络之内。然而通常我们将"云端"存储融合到数据中心内,我们会逐渐看到存储迁移到网络内所有节点。我们认为5G设备的核心在于高带宽和低延时服务。这些要求不仅影响空中接口无线方面,也会推进整个网络。分布存储和提高电子数据收集设备的智能程度都有利于通过使回路延时最小化并提供所需的服务和智能以实现这些目标。这些技术标准和架构是下一代基础设施网络或"智能灵活云"(Intelligent Flexible Could)的基础之一。云端之所以灵活是因为其可以快速满足不同的网络要求并且增加5G空中接口的具体挑战。云端之所以智能是因为其利用业务、顾客和网络数据来加强既有的服务,并且其是创建高度创新和竞争性的新服务的基础。
ARM及其合作伙伴提供基于ARM的通用处理平台,以满足实现5G方式的不同需求。
为什么在网络基础设施中使用ARM Cortex-A系列的处理器?
ARM正在提供处理器和相互连接的IP来满足网络基础设施的需求,未来的需求直接推进了ARM路线图。要提供这样的服务,关键在于各种各样的Cortex A处理器内核和高速缓存一致性互联,例如Cortex-A72,Cortex-A53和互联产品的CCN家族。
新的SoC平台将提供一系列多核异构CPU、DSP和功能特定的加速器内核,对于满足吞吐要求、5G部署延时和灵活性要求至关重要。越来越多的功能将被融合到单个SoC中,这通常将处理多种流量类型,包括数据通道有效负荷、控制平面流量、前端处理和用户调度。
伴随着发展集成与更高性能SoC的趋势,将会出现一些处理部件通过处理器内核和智能信号处理部件,来支持突发性高速流量有效负荷和时延敏感流量的情况。
网络基础设施应用混合了3个不同功能的不同层面:控制面板处理、数据包或回程处理、及在任一特定SoC设备上可获得的几个内核簇之间事件或流量调度。
5G基站设备同5G核心设备相比具有完全不同的功能。设计者必须要确定处理器功能的最佳混合以应对所需的处理,从可获得的技术选项中做出选择,在规定的时间内提供自己的设计以抓住市场机遇。
控制面板:控制面板的功能要求每个数据包处理量最大化,尤其是每个数据包所涉及的数以万计的指令,通常是以"从运行到完成"的模式分配。乱序和多级流水线可以得到非常有效的利用。
具备虚拟化功能的高性能内核可以满足控制面板、内容发布网络和其他要求高单线程性能功能的需求。在控制面板运营的应用包括NFV、用于云端和边缘网络的CDN和要求更多性能的潜在新兴远程访问技术(例如:5G)。
数据平面:
网络的优势在于能够看到几百Mbps或也许Gbps范围内的数据速率;访问或云端部分感受到1至10 Gbps的数据;内核处理20至几百Gbps的数据。和控制面板不同的是,此处的挑战在于处理回程流量的爆发、处理数据头并将数据置于缓冲存储器内而不丢失任何数据包。
这包括处理的完全不同方式。许多数据平面设计使用专用的数字信号处理系统,该设计通过ARM AMBA®互联将数据层面处理器连接到SoC。DSP提供一个专用最优指令组用于数据平面处理,并且将CPU从高耗电和计算密集型功能卸载。
除了用于控制处理的每个数据包数以万计的指令,数据包处理可能仅仅使用几百个指令/数据包。访问高速缓冲存储器(指令、数据、L2和L3)和外部存储器对数据包处理来说也是不同的。
数据和控制处理之间存在一个重要的区别。ARM使用"无状态"(stateless)和"有状态"(statful)的术语来区别这两个概念。无状态处理使用海量的小内核来处理进入SoC数据包的数据流。每个内核以"从运行到完成的模式"运行,以给数据头分类,并将数据包纳入存储器。每个数据包单独的处理;内核只知悉之前的任何数据包。内核的数量和互联的尺寸仅仅根据界面速度变化。相反,有状态处理 适用于更高水平的决策,数据包的历史在这样的情形下很重要。流量和会议可以得到管理,尤其是控制平面。
调度:
5G系统的另一个挑战在于与前两个正交。对于用户访问调度,如果需要按照可获得的空中接口带宽调度用户,延时是关键。以LTE为例,空中接口可能有几百个用户将被调度到他们自己的时隙。所有这一切都需要按照5G标准的时间限制通过潜在几个内核计算:可能小于0.5ms。这涉及很多优先计算、接收和传输任务的调度、及从DSPs、处理器和存储器接收和向DSPs、处理器和存储器发送信号。因此,具备在异构架构下使用多个内核并且在多个内核间切换的能力至关重要。
技术要求:
随着智能连接设备上的数据消费的急速增长,受到新的空中接口技术(如5G)的推动,系统设计人员利用相同的功率和设备位置来提供更佳性能的任务带来新设计。ARM一直在开发IP来支持更高的性能、多核处理器。连贯连接线、最佳性能增强物理和逻辑IP都支持这些非常灵活的异构结构,异构结构对于确保满足5G性能要求至关重要。新的ARM内核,如Cortex-A72和Cortex-A53,已经使得性能/瓦特和性能可扩展性目标能够在下一代SoC设计上实现。此外,在研发预算受到挑战的当下,具备良好支持的软件和工具生态系统的行业标准指令集合结构(ISA)使得SoC设计经理能够更快地将产品投入市场,节约研发资金,开发具有附加值和差异化专用的特点。
小结
在过去20年内,ARM已然成为移动变革的核心。从早期的2G手机到3G再到LTE,已经有超过200亿手机采用了ARM技术,ARM是蜂窝式调制解调器的核心。以ARM为基础的调制解调器使得我们日常生活中不可缺少的智能手机变成现实。
随着LTE日益成熟,我们已经把连接数字化生活的方方面面变为现实。在诸如电子邮件、新闻和社交媒体等信息化服务之外,我们看到现在人们倾向于更复杂的使用案例,覆盖到日常生活的方方面面,如健康、福利、医疗等等。就算是这些设备的形状因数已经开始改变并打破传统智能手机的限制;新的应用,如可穿戴,已经与我们的日常生活无缝衔接。
展望手机发展的下一个十年,我们可以有哪些期待呢?对服务的更多需求给服务我们的网络提出了更大容量的要求。更有效地利用无线频谱是至关重要的,这将行业研究催化推进到5G无线通信系统。增加移动网络的容量,可以让移动网络不仅服务更多的用户,并且随着世界在物联网的这把大伞下相互连接,也服务更多的"事件"或物体。通过更高效地使用和监控资源实现低碳经济、通过远程医疗实现普遍医疗保健或实现汽车联网,这次都只是持续移动变革所带来的诸多益处中的其中几个。
正如我们为了实现这些益处而建立了这些访问技术一样,对于下一代移动设备,我们也需要提供先进的处理能力。ARM Cortex-R8具备高效节能、实时处理的特点,能够很好地实现这一承诺,让设备供应商和原始设备制造商能够开发5G的潜能。
上一篇:5大问题1个对策Aruba助力大连民族大学建设智能校园网
下一篇:面向低时延工业以太网的Marvell
PHY
产品