- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
宽带放大器稳定时间的测量
宽带放大器用于仪表、波形合成、数据采集,以及反馈控制系统。为保证这类系统的稳定设计,必须验证高速下的精密运算。这一要求带来了困难的测量挑战。宽带运放具有0.2 mV的偏压直流精度,增益带宽为400 MHz,转换速率为2500V/μs(参考文献1)。IC设计者要在快速转换速率与短振铃时间之间作出权衡。快速转换放大器一般会延长振铃时间。这种组合使选择放大器和频率补偿工作更加复杂化(见附文1:"对放大器补偿的实际考虑")。另外,极快放大器的架构一般会导致折衷,这也会使直流误差指标降级。
稳定时间的定义
验证放大器直流规格是一件相对简单的事。各种文献都定义了要使用的测量技术。而要获得可靠的交流规格,则需要采用更复杂的方法。无论何种速度下的测量都需要仔细小心。动态测量尤其具有挑战性,而放大器稳定时间也很难确定(参考文献2?7)。稳定时间是从施加一个输入,直到呈现输出,并且在围绕最终值的一个规定误差带内保持的延续时间。放大器厂商通常在满量程转换上设定这个规格。
稳定时间包含三个各异的成分(图1)。延迟时间较小,几乎完全来源于放大器的传播延迟。在这一期间,没有输出的动作。在转换时间内,放大器以最快的速度走向最终值。振铃时间定义的是放大器从回转中恢复出来,并在某个预定误差带内停止动作的区间。对纳秒级稳定时间的测量需要精细的方案和实验技能。
稳定时间的传统测量方式是用一个虚假汇总节点(false-sum-node)技巧(图2)。电阻与放大器构成一个桥网络。当驱动放大器的输入端时,如果电路采用的是理想电阻,则输出端会步进到输入电压。在转换周期内,几只连接到稳定节点的二极管限制了电压的偏移。当稳定发生时,示波器探头电压应为0V。电阻分压器的衰减使探头的输出电压等于稳定电压的一半。
理论上,应可以观察到此电路快速地稳定至小波幅。但实际上不可能依靠它作有用的测量。这个电路有几个缺点,包括要求输入脉冲有一个在所需测量极限内的平顶。一般情况下,对5V步长,感兴趣的稳定电压小于5 mV。所有通用的脉冲发生器都不能将输出幅度和噪声保持在这些极限值内。您无法区分出发生器产生的误差和与放大器相关的误差。
示波器连接也会带来问题。随着探头电容的增加,电阻结的AC负载也影响着观测到的稳定波形。1×的输入电容过高,因此不适用这种测量。10×探头的衰减会损及示波器的增益,并且它10 pF的输入电容仍然会在纳秒级速度下产生明显的滞后。如果使用一个有源的1×、1pF FET(场效应晶体管)探头,则可以大大减轻这个问题,但仍有更严重的问题。
在放大器转换期间,可以在稳定节点使用箝位二极管,降低电压摆幅。这种方案的目标是防止电路对示波器输入端的过驱动。不幸的是,肖特基二极管上400 mV的压降意味着示波器要承受一个不可接受的过载(参考文献8)。对不同型号和品牌的示波器,其过驱恢复特性有很大的差异,厂商通常并不给出它的规格。在0.1%分辨率时,示波器一般会在10 mV/刻度时承受10倍的过驱,因此难以获得所需要的2.5 mV基准线。
用这种办法,没有希望在纳米速度下进行测量。
因此,要测量宽带放大器的稳定时间,就需要一种能以某种方式抑制过驱动的示波器,以及一个平顶脉冲发生器。唯一提供固有过驱动抑制能力的示波器技术是经典的模拟采样示波器。不要将这些示波器与有过驱动约束的现代数字采样示波器相混淆(参考文献8)。有些文章解释了经典采样示波器的工作原理(参考文献9?13)。尽管可以买到一些这类二手的仪器,但它们的厂商已不再生产了。不过,您可以借鉴经典模拟采样示波技术的过载优点,自己做出一个电路。另外也可以使电路具备用作纳秒稳定时间测量的特性。
避免平顶脉冲发生器需求的方法是作电流转换,而不是电压。控制一个快速稳定的电流进入放大器的汇总节点,要比控制一个电压更容易。这种方案减轻了输入脉冲发生器的工作,不过仍然必须有约1ns的上升时间,以避免测量误差。
实际测量
一个可以测量宽带放大器稳定时间的电路具有了经典方法的特性,不过还表现出了某些新东西(图3)。示波器通过一个开关连接到稳定点。通过从输入脉冲触发一个延迟脉冲发生器,可确定开关的状态。延迟脉冲发生器的时序安排是,稳定接近完成时才闭合开关。用这种方式,可以从时间和波幅两个方面采样进入的波形。示波器上没有任何后台动作;因此也不会出现示波器过驱动的问题。
开关是在放大器的汇总节点上,用输入脉冲控制。这个开关通过一个电压驱动电阻,门控进入放大器的电流。这种方案消除了对平顶脉冲发生器的需求,
上一篇:网络电话选择技巧
下一篇:巧妙解决路由器网络分层问题