• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 基于信息熵的Markov网络结构学习算法研究

基于信息熵的Markov网络结构学习算法研究

录入:edatop.com     点击:
1 引言

日常生活中人们常需要处理不确定信息,例如:预测明天是否会下雨,病人是否得了某种疾病。Bayesian网是进行不确定性推理的有力工具,被广泛应用于人工智能、专家系统、数据挖掘等领域,是当前研究的热点。利用Bayesian网可以推理不确定性知识,从而达到较好效果。

Markov网是类似于Bayesian网的另一种进行不确定性推理的有力工具。Markov网是一个无向图,构造时无需发现边的方向,要比构造Bayesian网容易得多。首先构造Markov网,再求出与之等价的Bayesian网。本文提出一种基于信息熵的方法构造Markov网,给出一个有效的基于信息独立测试的Markov网的构造算法,该算法是一种基于依赖分析的算法。在测试样本中的条件独立时,利用信息论中验证信息独立的一个重要结论,从而大大提高效率。为衡量构造的Markov网的好坏,引入I-图、D-图和P-图的概念。

2 依赖模型与MarkOV网

知识可以用一组条件独立和条件概率表示,Markov网(无向图)用于表示条件独立。下面主要讨论如何用Markov网表示一个依赖模型M(一组条件独立的集合)以及如何衡量Markov网的好坏(引入I-图、D-图和最小P-图)。

定义1:依赖模型M定义为一组条件独立的集合,设X,Y,Z是全集U的3个不相交的子集,M={I(X,Z,y)}。其中的I(X,Z,y)表示在给定Z的条件下,X独立于Y,即:p(X|Y,Z)=p(X|Z)和p(Y|X,Z)=p(Y|Z)。

定理1:依赖模型M中的I(X,Z,y)满足以下4个性质,设X,Y,Z是全集U的3个不相交的子集,
(1)对称性:I(X,Z,Y)XXXXXXI(Y,Z,X);
(2)分解律:I(X,Z,Y∪W)=》I(X,Z,Y)&I(X,Z,W);
(3)弱归并律:I(X,Z,Y∪W)→I(X,Z,∪W,Y);
(4)减缩律:I(X,Z,y)&I(X,Z,∪Y,W)→I(X,Z,Y∪W)若联合概率函数p严格为正,Vx,p(x)>0,则相交律成立。
(5)相交律:I(X,Z,∪W,Y)&I(X,Z,∪Y,W)→I(X,Z,Y∪W)给定一个依赖模型M,利用无向图中节点分割的概念表示依赖模型中的条件独立。

定义2:在有向无环图G中,X,Y,Z是U上3个不相交的子集,删去节点集Z及其相应的边,使节点集X,Y之间再无边相连,称Z将X,Y分割开,记为<X|Z|Y>G。用<X|Z|Y>G表示依赖模型中条件独立信息I(X,Z,Y),得到一个依赖模型的图形化表示方式,继续用I-图、P-图、D-图的概念衡量依赖模型M中的所有条件独立信息和最优Markov网。

定义3:设M为依赖模型,I(X,y,Z)M表示依赖模型M所蕴含的依赖关系(条件独立)I(X,y,Z)。无向图G=(V,E)为M的I-图、D-图、P-图,定义如下:
(1)G是M的I-图(独立图),当<X|Z|Y>G=<X|Z|Y>M。
(2)G是M的D-图(依赖图),当<X|Z|Y>M=><X|Z|Y>G。
(3)G是M的P-图(理想图),当<X|Z|Y>M<=<<X|Z|Y>G。

由上述定义可知,I-图不一定包含依赖模型M所蕴含的所有依赖关系,但I-图中蕴含的依赖关系M中一定蕴含;D-图恰好相反,D-图包含依赖模型M所蕴含的所有依赖关系,但D-图中蕴含的依赖关系M中不一定蕴含;P-图是最理想的情况,P-图与M形成一一对应关系。空图(不含任何边的无向图)是一个平凡的D-图,而完全图(包含所有边的无向图)是一个平凡的I-图。

定义4:设一个无向图G是M的一个I-图,若删除G中任何一条边后,使得G不再是M的I-图,则称G为M的最小I-图。显然,最小I-图能够最多地表示依赖模型M中的依赖关系。

定理2:满足对称性、分解性、相交律和弱归并律的依赖模型M,从完全图中删除所有条件独立性成立的边,则产生一个唯一的最小I-图。

3 信息熵概述

Markov网结构用来消除不确定性的东西,信息的载体称为消息。含有信息的消息集合称为信源。信源的信息熵,就是信源提供整个信息的总体度量。所以如果消息消除的不确定性越大,信源的信息熵就越小,信息间的相互依赖性就越大;反之,信息间的相互独立性就越大。具体概念作如下定义:
定义5:设属性X具有r种可能状态,Pi为状态Xi时的概率,则信息熵可定义为:

\
式中,C为大于0的常数。

定义6:设X,Y为两个相互关联的随机变量,称:\为X,Y的联合熵。H(X|Y)=H(X,i=1j=1Y)-H(Y)为给定Y时X的条件熵。条件熵H(X|Y)表示在观测到Y的结果后,对X保留的不确定性度量。
定义7:设X,Y,Z为3个不相交的变量集,称:\的互信息。
\为给定Z的条件下,X和Y的互信息(条件互信息)。
定理3:互信息I(X,Y)和I(X,Y|Z)具有如下性质:
(1)对称性,即I(X,Y)=I(Y,X|Z)和I(X,Y|Z)=I(Y,X|Z);
(2)非负性,即I(X,Y)≥0和I(X,Y|Z)≥0。而且,当且仅当X和Y条件独立时有I(X,Y)=0。同理,当且仅当在给定条件Z,X和Y条件独立时I(X,Y|Z)=0。

4 基于信息熵的Markov网构造算法

给定一样本集(n个属性的一张二维表),先对系统中N个变量构建一个完全无向图氏,然后利用信息独立测试理论有效删剪PG图,以得到所求的Markov网。
首先给出这个算法所需要的一些假设:给定的样本数据集D是完整的;所有的变量取值均为离散性,若取值连续可先进行离散化。
第1步:构造完全有向图

定义8:设一个系统含有N个变量{X1,X2,……,Xn},完全有向图PG={<Xi,Xj>|,其中i,j=1,2,…,n且i≠j,<Xi,Xj>表示Xi与Xj有因果关系Xi→Xj}。由此定义可知,PG是一个I-图。

上一篇:控制端口流量 不让交换机被“顶死”
下一篇:基于华为路由器接入的解决方案

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图