• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 宽带OFDM系统的干扰协调技术

宽带OFDM系统的干扰协调技术

录入:edatop.com     点击:


半静态干扰协调方法可以看作是静态干扰协调与动态干扰协调的一个折衷,它融合了二者的优点,摒弃了它们的缺点。在半静态干扰协调方法中,一方面,小区内负载的分布或者变化促使各小区用于干扰协调的资源发生变化,可见它可以很好地适应系统内负载的变化;另一方面,从集合S到S1、S2、S3的重新分割不需要在每个TTI都进行,S的重新分割完全可以只在系统内负载分布或者其变化比较大的时候才进行,这就有效地减小了NodeB之间或者NodeB和RNC之间额外的信令开销,提高了系统效率。这种方法可以在一定程度上提高整个系统的性能,尤其是小区边缘的性能。

三、干扰协调方案举例

前面介绍了干扰协调方法的基本原理和分类,下面将介绍两种具体的干扰协调方案。

1.方案一

图6给出了上、下行干扰协调技术的一个完整方案[5],这种方案可以认为采用的是静态干扰协调技术。整个频域资源S在系统初始化阶段被分割为N(考虑到系统的完全覆盖,N=7或N=9)个互不相交的子集Sn(n=1,2,…,N),每一个Sn与一个扇区Cn相对应,所有扇区都被划分为内、外两层。对于内层的移动终端,被分配到的传输子载波可以是集合S的任何一个子集合。而对于外层区域的移动终端,以扇区C1为考察对象,当扇区C6内有一个移动终端(图中的T1)运动到扇区边缘区域靠近扇区C1时,扇区C6将只会在集合S1中分配相应资源给该终端传输数据。与扇区C1相邻的其他扇区(如C2、C3、C4、C5、C7、)的情况也是如此。这也就是说对于每一个扇区,处在其边缘区域的用户只可能分配整个系统资源的一部分,这样可以确保分别处于两个相邻扇区的边缘区域的用户所分配到的频域资源不会相交,从而可以在一定程度上减轻小区间的干扰。在这种方案中,扇区的内层区域频率复用因子为1,外层频率复用因子为N。

\


  图6 干扰协调方案实例1

由于该方案是一种静态的干扰协调方法,所以存在和静态干扰协调同样的缺点:①固定的频域资源分割不能适应系统内负载的分布随着时间的变化而变化的情况;②固定的频域资源划分不能适应小区中心负载低、小区边缘负载高的情况;③未考虑扇区的内、外层按照什么样的原则划分。

2.方案二

图7是另一种干扰协调方案[6],(a)图给出了这种方案的频率资源规划方法,(b)图给出了某次调度后三个毗邻小区资源在小区边缘的分配情况。

在小区划分为内、外两层方面,本方案与前面干扰协调基本原理部分介绍的划分方法一致。在小区的频率资源规划方面,如图7(a)所示,假设整个频率资源由15个小的传输块Smn(m=1,2,3;n=1,2,3,4,5)组成,每5个小的传输块组成一个传输块组Sm(m=1,2,3),在资源分配时依次对应一个小区。

\

           图7 干扰协调方案实例2

对于每一个小区来说,它的内层频率复用因子还是可以为1,也就是可以分配Smn(m=1,2,3;n=1,2,3,4,5)中的任意资源。小区边缘区域的资源分配规则,以小区1(C_1)为例,首先可以将S1n(n=1,2,3,4,5)中资源的分配给该区域内的移动终端使用,如果C_1的边缘区域负载比较高,它就可以从S2n(n=1,2,3,4,5)、S3n(n=1,2,3,4,5)中借用资源分配给该区域内的终端使用。C_1从S2n(n=1,2,3,4,5)、S3n(n=1,2,3,4,5)中借用资源的顺序为:S25、S35、S24、S34、S23、S33、S22、S32、S21、S31。其他小区(如C_2、C_3)的资源分配方式也是如此(包括小区的内、外层区域)。

在图7(b)中可以看到某次资源分配结束后,三个毗邻小区的边缘区域资源分配情况:C_3的边缘区域满负荷;C_2的边缘区域轻度负荷;C_1的边缘区域中度负荷。相邻的小区边缘在资源分配时会出现部分资源交叠的情况。

通过前面的分析可以看出,这种方案的优点在于:①在某些情况下(比如一个小区边缘负荷较高,毗邻的两个小区边缘负载较低),可以提高小区边缘的性能;②只需要在系统初始化时对集合S进行一次分割,在这一点上类似于静态的干扰协调方案。但是,如果毗邻小区的边缘区域负载状况不像前面所说的那样匹配,由于依然有毗邻小区干扰源的存在,小区边缘性能的提高不是很明显。

上一篇:基于FPGA的DES加密算法的高性能实现
下一篇:基于以太网的电力智能监控终端的研究

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图