- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
LabVIEW中BP神经网络的实现及应用
录入:edatop.com 点击:
2.1 利用Matlab Scriipt节点实现
在此以对一个非线性函数的逼近作为例子来说明实现流程,其中输入矢量p=[一1:O.05:1];目标矢量f—sin(2。pi*p)+0.1randn(size(p))。利用.Mat—lab Script节点实现BP算法的过程如下:
(1)新建一个LabVIEw vi,在框图程序中添加Matlab Script节点。
(2)在节点内添加Matlab的动量BP算法实现代码,并分别在节点左右边框分别添加对应的输入/输出参数,如图1所示。
(3)在vi的前面板添加相应的控件,设置输入参数,连接输出控件。执行程序,结果如图2、图3所示。
此方法能够直接利用Matlab强大的神经网络工具箱,程序运行时会自动调用系统中已安装的Matlab进行计算,不用进行复杂的编程,开发效率很高。
2.2 利用图形编程实现
LabVIEw是美国NI公司推出的基于图形化编程的虚拟仪器软件开发工具,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。在此以一个设备状态分类器设计作为例子来说明实现流程输入,该设备有8个输入分量,即温度、湿度等外部条件;而输出状态则有3种,分别为正常、偏小、偏大。这里采用12个训练样本,每个样本有8个分量,3类输出分别编码为(O 1),(1 0),(1 1),以下即为输入样本及标准输出数据(见图4、图5)。
在此以对一个非线性函数的逼近作为例子来说明实现流程,其中输入矢量p=[一1:O.05:1];目标矢量f—sin(2。pi*p)+0.1randn(size(p))。利用.Mat—lab Script节点实现BP算法的过程如下:
(1)新建一个LabVIEw vi,在框图程序中添加Matlab Script节点。
(2)在节点内添加Matlab的动量BP算法实现代码,并分别在节点左右边框分别添加对应的输入/输出参数,如图1所示。
(3)在vi的前面板添加相应的控件,设置输入参数,连接输出控件。执行程序,结果如图2、图3所示。
此方法能够直接利用Matlab强大的神经网络工具箱,程序运行时会自动调用系统中已安装的Matlab进行计算,不用进行复杂的编程,开发效率很高。
2.2 利用图形编程实现
LabVIEw是美国NI公司推出的基于图形化编程的虚拟仪器软件开发工具,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。在此以一个设备状态分类器设计作为例子来说明实现流程输入,该设备有8个输入分量,即温度、湿度等外部条件;而输出状态则有3种,分别为正常、偏小、偏大。这里采用12个训练样本,每个样本有8个分量,3类输出分别编码为(O 1),(1 0),(1 1),以下即为输入样本及标准输出数据(见图4、图5)。
上一篇:GPRS/EDGE无线信道配置方法
下一篇:电脑死机故障维修经验