• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > PWM电源控制器拓扑结构及仿电流感测信号技术

PWM电源控制器拓扑结构及仿电流感测信号技术

录入:edatop.com     点击:

1、关于宽或高输入范围、低电源输出功率降压稳压系统的问题

一般来说,常常采用开关稳压器将不稳定的宽与高输入电压降低为稳定的低输出电压。对于必须通过DC/DC转换降低输入电压的系统来说,采用开关稳压器可大幅提高转换效率,这方面远比线性稳压器好得多。其脉宽调制PWM电源供应控制器有单端拓扑结构与双端拓扑结构。

1.1单端拓扑结构的控制方法与特征

控制方法有二种,即电压模式与电流模式。电压模式是简易、低噪音的控制方法,可满足大输入及输出范围的需求。电流模式是带内置电流限制,拥有快速瞬态响应时间。

集成度:集成的软启动(可编程)提供了可预测的启动能力,而内置前沿消隐电路(1eadingedgeblanking),用以抑制MOSFET管开启时的转换所产生的毛刺。

性能具有:多种电压模式控制器都具有输入电压前馈能力,可对输入线电压的改变做出即时的响应;绝大部分的控制器都具有内置高电流驱动能力。无须外置MOSFET驱动器;更低的启动电流,以用于脱机应用;低工作电流实现了低负载下的高效率;可编程最小化的责任周期限制,实现了低负载下的高效率(如UCC3581)。

特点:在10W"350W脱机工作,DC/DC电源;单端拓扑结构电源(降压型、升压型、回扫型和正向)。

1.2双端拓扑结构控制方法与特征

其电流模式的控制技术是采用逐周期电源限制(cycle-by-cyclecurrentlimltmg),并以其快速的瞬态响应为特色;而电压模式是多用途,低噪音的控制方法,可实现大的责任周期范围。

软开关特征:零电压切换(ZVT)软开关技术最小化了开启时的功率损耗;相位切换、零电压转换控制器最大化了全桥转换器的效率。

保护特征:灵活的过电流限制回路提供了可编程的错误保护模式;可编程软启动实现了初始化时及出错之后的可预测启动;高速,逐周期电流限制;最大化责任周期限制以防止变压器饱和;可编程停滞时间(deadtime)控制,防止了电源开关的交叉传导。

1.3举例应用——更高集成度的PWM控制器MAX5051

MAX5051为双开关拓扑PWM控制器,比较理想用于建立高性能、同步整流、48V隔离电源。见图1 MAX5051功能引脚与应用示意图。其元件数减少2倍而成本削减3倍。

\

应该说当今大部分内置变压器的直流/直流转换器都采用回扫及正向的电路程式。由于这两种布局的变压器匝数比可以按照不同要求加以设定,因此可以满足大部分降压转换的要求,确保使宽与高输入/输出降压比的应用也可充分发挥转换性能。对于不需要为接地绝缘的系统来说,采用降压稳压器是较为理想的电路布局。降压稳压器电路布局的优点是成本较低,因为这个解决方案无需采用变压器。以下是降压稳压器的电压转换公式:Vout=VIN ×D。

2、新型集成开关DC/DC转换器设计与应用

2.1设计思想

效率及小尺寸解决方案。若需同时实现最高转换效率及最小化的解决方案尺寸,那么推荐使用带集成开关的感应转换型转换器是一种理想选择。低功耗DC/DC转换器系列以及与负载点步降DC/DC转换器可实现97%的峰值效率,如T1的TPS6xxxx与TPS54xxx就是一例。其同步校正不仅取代了不便宜的肖特基校正二极管,同时还使转换器效率的提升高达10%。更高的效率意味着电池驱动应用了额外的操作时间,而大电流应用中更低的功耗也放松了对散热设计的要求。

因外部仅需电阻、电容及单个电感支持工作,集成的高侧及低侧转换FETs便可有效的降低了占板空间。而取决于不同的输出电流,其集成开关DC/DC转换器可采用如下封装模式:CSP(800mA)、SOT-23(400mA)、QFN-10(1.2A)以及TSSOP-28(13A),从而更减小了解决方案的尺寸。

关于输出电流-输出电流典型受限于集成FETs的尺寸,并且对于最小输入电压来说是额定的,如TPS6xxxx系列。而如TPS54xxx系列输出电流指示为连续可用的输出电流;可实现更高的峰值电流以确保高性能DSP、FPGA及ASIC系统启动时能有适合的供给。且通过以下方程:

Lout=0.65ⅩIswitch(min) Ⅹ(VinⅩVout)

可实现对输出电流的粗略估计。对于输出电流低于300mA及效率低于90%的情况,无电感充电泵DC/DC稳压器会是一个成本及空间效益型的选择。

关于输入电压-DC/DC转换器能与宽范围的输入源协同运转,包括供电模块、插头式电源(wall supply,或称墙式电源)以及电池。如TPS6xxxx系列及其小外形封装,低静态工作电流都已经为低功耗电池驱动应用作了最优化。对于电池驱动系统来说,输入电压随着电池放电在大范围内变动。因此,转换器的选择就必须取决于所给定的电池工艺水平及数量。如TPS54xxx SWlFT系列可工作于预调节24V、12V、5V或3.3V的总线电压。

关于输出电压-当前的高级DSP、FPGA及ASIC芯片要求更低的电源电压。为实现最大的灵活性,转换器可同时支持额定的及可低至0.7V的可调节输出电压。

来源:电子工程世界

上一篇:JTAG仿真接口电路设计
下一篇:优化电源模块性能的PCB布局技术

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图