- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
极化转换器原理与结构设计
图3-19表示在圆波导内放置两排销钉,构成销钉分量移相器。对于行于销钉所在平面的电场来说,销钉呈容性,使其相速减小,而对垂直于销钉面的来说销钉呈感性,使其相速增加。控制销钉插入深度和销钉的个数,可以做到与同相,将圆极化波转换为线极化波。为了使销钉移相器与波导匹配,销钉的插入深度是渐变的,中间最深,两边最浅。用渐变宽度的月牙形金属片代替两排销钉,也能构成移相器,其基本原理与销钉移相器相同。由于销钉所在平面与介质所在平面一样,都是使与之平行的相位滞后。所以在完成同样的极化方式转换时,销钉平面在圆波导内的取向与介质片的取向是一致的。
前馈和后馈天线
接收各种极化波时,极化器与波导宽边的安置方向如图3-20所示,这是从高频头的矩形波导口向馈源方向看去的。
圆形波导由于结构对称,对波的极化形式没有选择,而矩形波导只允许与其宽边垂直的电场通过,所以波导的宽边必须与电波极化的方向相垂直。
图 3-21 一种可调线极化馈源
一种可调线极化馈源,如图3-21所示。在接收线极化波时,只要调整线极化振子,使之平行于线极化波的极化方向即可。若将振子改为小螺旋,则该馈源接收圆极化波无需加极化器。此外,背射螺旋馈源也是不加极化器而接收圆极化波的。
3.4.3 圆矩过渡波导
波导型的馈源为了获得旋转对称的方向图,通常以圆波导激励。紧接在馈源后面的极化器也是由圆波导构成的。而大部分的高频头(LNB)的输入端是矩形波导,所以,在馈源的输出端口通常加有一个圆矩过渡波导段,以完成圆波导中的模电磁波到矩形波导中模电磁波的转换。在圆矩过渡波导段中要求引入的不连续性应尽量小,以达到减小馈源的驻波比,改善阻抗匹配的目的。
圆矩波导的过渡有多种形式。图3-22为圆矩渐变过渡波导,圆波导模经过一段渐变线逐渐过渡为矩形波导模。为了使电磁能量从圆波导全部传入矩形波导,要求矩形波导与圆波导的二模相位相等,据此得圆波导半径R=2α/3.41=0.6α,其中α是矩形波导宽边尺寸。与此类似的渐变过渡变换方式还有楔形圆矩过渡,如图3-23所示。
图 3-22 圆矩渐变过渡波导及其电场模式变换过程示意图
阶梯式矩圆过渡波导如图3-24所示。采用几节长度为λg/4 阶梯,使圆波导过渡到矩形波导,λg为其节变形波导段的波导波长。一般采用2节λg/4过渡段,每一台阶的高度由λg/4 过渡段的特性阻抗决定。
图 3-23 采用楔形圆矩过渡波道的馈源
图 3-24 阶梯式矩圆过渡波导