- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于56F803型DSP的大功率超声波电源的设计
3 系统的控制策略
超声波电源系统采用频率跟踪和功率调节相结合的控制策略,从而使发生器在输出最大功率时可达到最高效率。此种控制策略主要通过控制PWM的周期(也就是控制开关频率)和PWM控制波形的移相角来实现。
3.1 频率跟踪控制的实现
采用锁相法实现频率跟踪控制。使用KT20A/P型电流传感器和KV20A/P型电压传感器分别检测换能器二端的电压和电流,经过滞环控制得到电压和电流的方波信号,如图3所示。该滞环的回差为lV。然后,对二路方波信号经过异或门和D触发器得到相位差波形和相位差符号。相位差波形送入DSP的捕获口,计算出相位差大小T,相位差符号送入GPIOA7口.获得符号标志量flag。当T≠O,flag=o时,表示电压超前电流。此时,应该减小开关管的频率f;当T≠O,flag=l时,表示电压滞后电流,此时,应该增加开关管的频率f,然后把频率量转化成时间量附给DSP模值寄存器,从而改变输出PWM信号的周期。
3.2 功率控制的实现
为了使高频逆变电路的输出功率满足换能器所需要的额定功率,要采用功率控制电路,即采集直流侧的电流信号与给定的电流值进行比较,并对偏差进行数字PI调节,从而改变移相控制波形的移相角.进而改变高频逆变电路的输出电压。
采集直流侧的电流来实现功率控制的主要原因是通过换能器的电压和电流是交流,需要检波、滤波等处理过程才能检测到,这样比较困难。而直流侧电压是直流量,基于这种考虑,采用了检测直流侧电流的方法。采用增量式数字PI运算减小偏移量,从而达到无静差控制。直流侧电流实时跟踪给定电流,改变软开关控制信号的移相角,从而改变高频逆变电路的输出电压,当移相角增大时输出电压也增大,所以高频逆变电路最终会输出换能器所要求的功率。
3.3 周期分段实现移相控制
本系统的开关采用占空比为50%的PWM信号移相控制。传统移相控制方法有二种:一种是采用UC3875产生移相控制波形.但电路复杂,不便于调试。精度低:另一种是采用单片机,这种方法大部分采用正弦表产生移相波形,程序冗长、复杂、可读性差。本系统采用周期分段控制方法实现移相控制波形。在每个PWM周期中把开关管的控制波形分为4段.每段波形中DSP模值寄存器PWMCM的值等于计数器PWMVAL的值。变量Count代表输出的是第几段波形,当Count=l或Count=3时.把波形I或Ⅲ的模值MODUL01(I和Ⅲ的模值相同)赋给模值寄存器。当Count=l时,PWM模块的0通道和3通道分别输出高电平和低电平。当Count=3时.PWM模块的0通道和2通道分别输出低电平和高电平;当Count=2或Count=4时.把波形Ⅱ或IV的模值MODULO2(Ⅱ和IV的模值相同)赋给模值寄存器.当Count=2时,PWM模块的O通道和3通道都输出高电平。当Count=4时.PWM模块的0通道和2通道都输出低电平。然后,按照上述方式循环输出波形,如图4所示程序框图。
来源:电子元器件