- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
双正激DC/DC变换器的一种新型拓扑研究
以下将分析各波形的产生原理及相互联系。鉴于主电路变压器原边上下桥臂工作情况类似,只需观察上桥臂的工作情况就可以较清楚地了解整个电路的工作原理。图4 (a) 展示的是加在主MOS 管M1门极的PWM控制芯片产生的波形(为了简化仿真,它只是逻辑电平。门极实际的电平变化请参照本文实际测量波形) ;而加在M2 的门极信号与之类似,只是从时间上交错开。
图(c) 是原边绕组L1 两端电压: 当主MOS 管M1 导通时,使原边线圈两端作用以U = Ud/2 的正向电压;当M2 导通时,由于L1、L2 紧耦合且极性相反,则L1 两端为负电压;当M1 、M2 都关断时,L1 两端电压为零。
图(b) 是流过绕组L1 的电流波形:从中也不难看出在主开关管M1 导通时为一条线性增加的直线,由于它还包含了负载电流成分,因而此直线并不是正负对称,而是向上平移了;在M1 关断时,L1 不流过电流。图(d) 所示的是与图(b) 相关的励磁续流回路的电流波形:在M1 或M2 开通时,励磁电流由原边提供,此时该续流回路电流为零;当M1 、M2 都关断时,励磁电流通过续流回路作用维持恒定的正值或负值,以维持磁通近似恒定。通过这两个波形,进一步证实了在前面原理分析中对励磁电流变化规律的总结。
图(e) 是励磁电流续流回路的MOS 管M7 的门极信号(M8 的与之相同) 。为了保证该回路能够在M1 、M2 关断时开通,两门极信号之间采用了"或非"的逻辑关系。具体的电路结构可参照PWM 控制产生部分。
图(f) 就是所关心的变压器某一副边绕组的波形:从图中可看出,它只在M1 导通时才出现正电平或M2 导通时出现负电平,而在两管均不通时,电压为零;也就是说,可以通过改变主电路MOS 管门极信号的占空比来达到控制输出电压的目的。这都是在励磁续流回路的作用下才得以实现的,否则在M1 、M2 关断期间,副边也会产生很高的电压,这便失去了输出电压的可控性。
实验波形
在分析实验波形之前,应该注意的是由于变压器总会存在一些漏感,因此实际的波形与仿真得到的有一些细微差别,这是很正常的。
在图5 (a) 中,上侧波形就是前面提到的主电路上桥臂MOS 管实际的门极信号,它是由SG3525 的OUTA、OUTB 合成的,下桥臂MOS 管门极信号电平与其相反;图5 (a) 下侧波形是由OUTA、OUTB"或非"得到的励磁续流回路MOS 管的门极信号,从图中可以很好地看到两者的对应关系。
在图5(b)中,下侧波形就是其中励磁续流回路的MOS 管门极控制电压信号;上侧波形为变压器某副边绕组的电压波形,可见只有在主电路MOS 管开通时,副边绕组两端才有正向或负向电压;而当M1、M2 均不导通时,绕组两端电压为零(由于漏感影响,有一些振荡) ,依此可以达到通过改变占空比调压的目的。实际波形与仿真波形基本吻合,表明实验取得了期望的结果。
结语
在科研实践中,提出了一种新型的双端正激式DC/DC 变换器拓扑方案。它除具有铁芯利用率高,正负半周均可传递能量等优点外,还可有效地避免上下桥臂直通短路问题。本文分析了其所构成的开关电源主电路及控制、自启动等回路的结构原理,同时还提出一种新型励磁磁势维持续流控制方法,有效地解决了其它方案的磁通维持阶段波形变差的问题,特别适合于直流输入电压高,高频变压器变比大的情况,具有较高的实用价值。
作者:张加胜 张磊 来源:电工电能新技术