• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > IGBT在大功率斩波中问题的应用

IGBT在大功率斩波中问题的应用

录入:edatop.com     点击:

另外,由于受晶体管制造工艺的限制,IGBT很难制成大电流容量的单管芯,较大电流的器件实际是内部小元件的并联,例如,标称电流为600A的IGBT,解剖开是8只75A元件并联,由于元件并联工艺(焊接)的可靠性较差,使器件较比单一管芯的晶闸管在可靠性方面明显降低。

二. IGBT的擎住效应

IGBT的简化等效电路如图3所示:

\

图3 IGBT的等效电路及晶闸管效应

其中的NPN晶体管和体区短路电阻Rbr都是因工艺而寄生形成的,这样,主PNP晶体管与寄生NPN晶体管形成了寄生的晶闸管,当器件的集电极电流足够大时,在电阻Rbr上产生正偏电压将导致寄生晶体管导通,造成寄生晶闸管导通,IGBT的栅极失去控制,器件的电流迅猛上升超过定额值,最终烧毁器件,这种现象称为擎住效应。IGBT存在静态和动态两种擎住效应,分别由导通时的电流和关断时的电压过大而引起,要在实践中根本避免擎住效应是很困难的,这在某种程度大大影响了IGBT的可靠性。

三. IGBT的高阻放大区

"晶体管是一种放大器",ABB公司的半导体专家卡罗尔在文献1中对晶体管给出了中肯*价。晶体管与晶闸管的本质区别在于:晶体管具有放大功能,器件存在导通、截止和放大三个工作区,而放大区的载流子处于非饱和状态,故放大区的电阻远高于导通区;晶闸管是晶体管的正反馈组合,器件只存在导通和截止两个工作区,没有高阻放大区。

众所周知,功率半导体器件都是作为开关使用的,有用的工作状态只有导通和截止,放大状态非但没用,反而起负面作用。理由是如果电流通过放大区,由于该区的电阻较大,必然引起剧烈的发热,导致器件烧毁。IGBT从属于晶体管,同样存在高阻放大区,器件在作开关应用时,必然经过放大区引起发热,这是包括IGBT在内的晶体管在开关应用上逊色于晶闸管的原理所在。

\

图4a 晶闸管的PNPN结构与等效电路

四. IGBT的封装形式与散热

对于半导体器件,管芯温度是最重要的可靠条件,几乎所有的技术参数值都是在允许温度(通常为120○——140○C)条件下才成立的,如果温度超标,器件的性能急剧下降,最终导致损坏。

半导体器件的封装形式是为器件安装和器件散热服务的。定额200A以上的器件,目前主要封装形式有模块式和平板压接式两种,螺栓式基本已经淘汰。

模块式结构多用于将数个器件整合成基本变流电路,例如,整流、逆变模块,具有体积小,安装方便,结构简单等优点,缺点是器件只能单面散热,而且要求底板既要绝缘又要导热性能好(实现起来很困难),只适用于中小功率的单元或器件。

平板式结构主要用于单一的大电流器件,是将器件和双面散热器紧固在一起,散热器既作散热又作电极之用。平板式的优点是散热性能好,器件工作安全、可靠。缺点是安装不便,功率单元结构复杂,维护不如模块式方便。

综合利弊,当电流大于200A(尤其是500A以上)的半导体器件上首选平板式结构,已经是业内共识,只是IGBT受管芯制作原理的限制,目前无法制造成大功率芯片,不能采用平板式结构,只好采用模块式,虽然安装方便,但散热性能差不利于可靠性,这是不争的事实。

五. IGBT的并联均流问题

目前,国外单管IGBT的最大容量为2000A/2500V,实际的商品器件容量为1200A/2400V,根据大功率斩波的需要,通常,额定工作电流为400A——1500A,考虑到器件工作安全,必须留有2倍左右的电流裕度,再结合本文前述的IGBT最大电流标称问题,单一器件无法满足要求,必须采用器件并联。半导体器件并联存在的均流问题是影响可靠性的关键,由于受离散性的限制,并联器件的参数不可能完全一致,于是导致并联器件的电流不均,此时的1+1小于2,特别是严重不均流时,通态电流大的器件将损坏,这是半导体器件并联中老大难的问题,为此,要提高斩波包括其它电力电子设备的可靠性,应该尽量避免器件并联,而采用单管大电流器件。

从理论上讲,IGBT在大电流状态具有正温度系数,可以改善均流性能,但是毕竟有限,加上可控半导体器件的均流还要考虑驱动一致性,否则,既使导通特性一致,也无法实现均流,这样,就给IGBT并联造成了极大困难。

六. IGBT的驱动与隔离问题

可控半导体器件都存在控制部分,晶闸管和晶体管也不例外。为了提高可靠性,要求驱动或触发部分必须和主电路严格隔离,两者不能有电的联系。

与晶闸管的脉冲沿触发特性不同(沿驱动),IGBT等晶体管的导通要求栅极具有持续的电流或电压(电平驱动),这样,晶体管就不能象晶闸管那样,通过采用脉冲变压器实现隔离,驱动电路必须是有源的,电路较为复杂,而且包含驱动电源在内,要和主电路有高耐压的隔离。实践证明,晶体管的驱动隔离是导致系统可靠性降低不可忽略的因素,据不完全统计,由于驱动隔离问题而导致故障的几率约占总故障的15%以上。

来源:维库开发网

上一篇:数字音频广播(DAB)接收机的方案原理及设计思路
下一篇:USB 3.0电缆实物解析

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图