- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于CPLD+DSP的实时数字 像稳定系统
2.2 CPLD控制
系统的逻辑控制器是100引脚的XC95144,其主要工作是控制输入/输出帧存,以便DSP将存在其中的处理好的图像数据读出,并在同步控制信号和消隐信号的协同下形成标准视频输出信号,送到监视器显示。图3给出了逻辑控制的原理框图。
CPLD的逻辑控制的工作包括:1)根据SAA7110分离出的同步信号,经过逻辑判断后,给出BT121需要的同步信号;2)由于SAA7110输出的LLC2时钟与采样时钟、输出时钟是同步的,因而以LLC2作为采样数据存储和同步控制子系统的时钟,CPLD内部计数器进行数据采样计数,产生偏移地址,以控制输入/输出缓冲读写数据,使用LLC2时钟也避免了使用外部时钟需要解决的信号相互间的同步和锁相:3)计数器产生控制中断,通知DSP启动数据读/写EDMA通道和进行数据转移;4)低位地址A0和A1进行译码产生Bank Enable信号,送到双口RAM以进行数据位选通。由于输入/输出缓存具有对称的硬件结构,所以XC95144在进行地址计数时,产生两套相同Bank信号和地址偏移,供输入和输出双口RA-M。
3 数字图像数据的采集与输出
3.1 数据采集
系统的设计视频信号采集能力是从CCD获得模拟视频信号中采集到512×512大小的数字图像,并通过帧缓存——异步静态双端口存储器(dual-port RAM),经DSP的EDMA通道送到SDRAM中。采集模块的结构如图4所示。
SAA7110的初始化通过I2C总线对其内部控制寄存器进行相应设置而实现,该系统将DSP上的McBSP(多通道缓冲串口)的两个引脚与SCL和SDA相连,将McBSP的引脚配置成通用I/O口,这样就能通过编写DSP程序,在上电时通过DSP的多通道缓冲串口配置SAA7110。
3.2 数据位拼接
由于SAA7110和BT121都是8 bit精度器件,而双口RAM的每边都是36 bit精度的存储器,但双口RAM的4个BANK通道,每个BANK各9 bit,共36 bit数据,可通过BEO~BE3信号选通,因此只有将SAA7110和BT121的8 bit数据进行拼接后才能送到双口RAM。由于双口RAM的每个BANK都是9 bit,SAA7110和BT121的8 bit数据总线接在每个BANK的低8 bit,忽略最高位第9位,直接地,形成8 bit的数据精度,完成不同数据精度位器件间的握手。
3.3 数据输出
处理完的图像数据,经D/A转换器BT121进行数模转换后,送到显示器,这个过程必须在严格的同步时钟控制下进行。SAA7110给出的同步信号包括水平同步、垂直同步、奇偶场和采样时钟,而BT121的同步信号只有空白信号(BLANK)、合成信号(SYNC)和转换时钟。当BLANK信号为1时,BT121才进行D/A转换,SYNC信号为1时才打开D/A通道。所以,2个器件间的同步信号不能直接握手,必须经过一定的逻辑转换。S-AA7110的同步信号引脚接到CPLD,由CPLD经过一定的逻辑运算后,送出符合BT121同步要求的信号。
来源:维库开发网
上一篇:准谐振反激的原理、应用及参数计算
下一篇:TMS320C54x系列DSP的中断机制