- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
倍压整流电路原理
倍压整流电路原理
图1 半波整流电压电路
(a)负半周 (b)正半周
(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。
(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.
其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。
如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一
电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。
如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。
图3 输出电压波形
所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电
路称为半波电压电路。
正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。
2、全波倍压电路
图4 全波整流电压电路
(a)正半周 (b)负半周
图5 全波电压的工作原理
正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。
负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。
来源:电子发烧友
上一篇:模数转换芯片AD7810的原理及应用
下一篇:IP
STB系统构架及规划