- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
多片DDC芯片HSP50214B与DSP接口电路设计
由于DSP的数据总线和地址总线需要同时与EPLD和四片HSP50214B相连接,为了提高总线的驱动能力,DSP输出的总线需要通过TI公司的SN74LVTH162245芯片进行驱动后才能与这些异步接口的器件相连接。但是,这样直接加上驱动的数据和地址总线被四片HSP50214B分时复用会带来传输阻抗不匹配的问题,系统采用的方法是使被复用的DSP总线上的每一路信号首先驱动SN74LVTH162245上的四个输入端,这样就可以从它的输出端得到四个被相互隔离的四路相同信号,然后再各自加端接匹配电阻,对每路信号进行匹配后再接到各自的终端。这样不仅解决了信号隔离问题,还很好地解决了一路信号线因驱动多路终端所引起的传输阻抗不匹配的问题。
此外,DSP的控制信号通过EPLD译码产生DDC的输入使能信号ENI,决定DDC芯片开启工作时刻。在DSP加载DDC芯片控制字,HSP50214B芯片开始工作后产生输出数据有效信号DATA_RDY,通过EPLD对此信号进行计数监控,可以实时计算DDC输出的数据量,并进而向后级DSP发出读数据请求中断,实现合理的时序分配。
多片DDC同步工作的关键技术
为了实现多路中频信号同步处理,要求DDC同步工作。DSP通过EPLD译码控制着四片DDC的输入使能信号ENI,在DSP写DDC控制字期间,ENI处于无效状态,DSP写操作结束后向EPLD发出控制信号,将四片DDC芯片的输入端同时使能,从而实现了多DDC同步启动工作。
图2 多片HSP50214B同步工作电路
多片DDC的同步还需要内部工作时钟的同步,这是通过主从配置实现的,芯片的前端工作电路由输入时钟(CLKIN)实现同步,而后端电路由工作时钟(PROCLK)实现同步, 为了使四片DDC和EPLD之间系统时钟同步,系统要求用一个时钟信号源产生四路相干时钟分别分配给EPLD和四片HSP50214B,这给保证时钟信号的驱动能力和信号完整性带来了难度。系统的解决办法是将温补晶振产生的40MHz时钟信号首先传送到一个零延迟时钟驱动芯片CY2305的输入端,再由该芯片输出五路同步时钟信号,其中一路时钟直接供给EPLD,其它四路时钟分别输入HSP50214B的输入时钟CLKIN和工作时钟PROCLK。
DDC之间由SYNCOUT,SYNCIN1,SYNCIN2,MSYNCO和MSYNCI来控制同步时序, 如图2所示。MSYNCO是多芯片同步输出引脚,系统中HSP50214B_1配置为主芯片,它的MSYNCO输出连接至四片HSP50214B的MSYNIN引脚;SYNCOUT引脚由前端时钟CLKIN或工作时钟PROCLK产生,用以同步芯片内部工作,其中HSP50214B_1的SYNCOUT引脚连接至四片HSP50214B芯片的SYNCIN2引脚,用以同步DDC芯片内部的FIR滤波以及自动控制增益(AGC)部分;HSP50214B_2的SYNCOUT引脚连接至四片HSP50214B芯片的SYNCIN1引脚,用以同步DDC芯片内部的CIC抽取滤波以及数控振荡器部分。
结 语
在"基于电视信号的无源雷达信号处理"项目中,笔者设计的中频采集板卡对接收机输出的4路伴音和图像中频信号进行高速采集与数字下变频。笔者在电路设计中采用了本文提出的DSP控制多片DDC芯片的接口设计方案,对于4路A/D转换后的高速信号,分别通过DDC进行下变频和多级抽取滤波。该无源雷达信号处理机已经通过了外场试验验证,其中的中频采集板卡经测试可以精确实现数字下变频功能,精确度为0.01Hz;抽取模块实现信号速率400倍降低;滤波环节有效地增大了采集卡的动态范围31dB,很好地满足了无源雷达信号处理机的指标要求。
来源:维库开发网
上一篇:几种常用51单片机的I/O口驱动能力分析
下一篇:基于FPGA的彩色
像增强系统