- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
如何权衡充电电池与电源管理
就镍基可充电电池而言,快速充电终止基于电压或温度。如图1所示,典型的电压终止方法是峰值电压探测,在峰值时即每个电池的电压在0~-4mV范围内,快速充电被终止。基于温度的快速充电终止方法是观察电池温度上升率T/t来探测完全充电。典型的T/t率为1℃/每分钟。
图1:镍电池化学技术的充电曲线。
锂离子/锂聚合物电池
与NiCd电池和NiMH电池相类似,在快速充电之前尽可能检验并调节锂离子电池。验证和处理方法与上述使用的方法相类似。
如图2所示,验证和预处理之后,先用一个1C或更低的电流对锂离子电池进行充电,直到电池达到其充电电压极限为止。该充电阶段通常会补充高达70%的电池容量。然后用一个通常为4.2V的恒定电压对电池进行充电。为将安全性和电池容量,必须要将充电压稳定在至少1%。在此充电期间,电池汲取的充电电流逐渐下降。就1C充电率而言,一旦电流电平下降到初始充电电流的10-15%以下充电通常就会终止。
图2:锂离子电池化学技术充电曲线。
开关模式与线性充电拓扑的对比
传统上来说,手持设备都使用线性充电拓扑。该方法具有诸多优势:低实施成本、设计简捷以及无高频开关的无噪声运行。但是,线性拓扑会增加系统功耗,尤其是当电池容量更高引起的充电率增加的时候。如果设计人员无法管理设计的散热问题,这就会成为一个主要缺点。
当PC USB端口作为电源时,则会出现其他一些缺点。当今在许多便携式设计上都具有USB充电选项,并且都可提供高达500mA的充电率。就线性解决方案而言,由于其效率较低,可以从PC USB传输的"电能"量就被大大降低,从而导致了充电时间过长。
这就是开关模式拓扑有用武之地的原因。开关模式拓扑的主要优势在于效率的提高。与线性稳压器不同,电源开关(或多个开关)在饱和的区域内运行,其大大降低了总体损耗。降压转换器*率损耗的主要包括开关损耗(在电源开关中)以及滤波电感中的DC损耗。根据设计参数的不同,在这些应用中出现效率大大高于95%的情况就不足为奇了。
当人们听到开关模式这个术语时大多数人都会想到大型IC、大PowerFET以及超大型电感!事实上,虽然对于处理数十安培电流的应用而言确实是这样,但是对于手持设备的新一代解决方案而言情况就不一样了。新一代单体锂离子开关模式充电器采用了最高级别的芯片集成,高于1MHZ的使用频率以最小化电感尺寸。图1说明了当今市场上已开始销售的此类解决方案。该硅芯片的尺寸不到4mm2,其集成了高侧和低侧PowerFET。由于采用了3MHz开关频率,该解决方案要求一个小型1uH电感,其外形尺寸仅为:2mmx2.5mmx1.2mm(WxLxH)。
充电器的选择
电池充电器工具使得设计人员选择正确的充电器的过程更轻松。
来源:维库开发网
上一篇:开关电流电路延迟线的设计
下一篇:利用电池监测系统来提高UPS的可靠性