- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
超高速CMOS动态负载分频器设计及研究
2.2 D 锁存器具体设计步骤
首先,根据所要求的参数,如速度、摆幅、电压、电流、负载等等确定电路具体结构, 本文中根据速度和功耗的要求,以及前面对各结构的分析,采用动态负载结构。
其次,根据所采用的工艺,提取所需要的晶体管基本参数,根据(2)、(3)式,当输 入信号速度达到10GB/s,结合需要达到的参数要求,选择合适的便置电流Is。
第三,进行静态工作点分析,CK 输入为低电平时,MN0 导通,同时MP1、MP2 工作 在线性区;而CK 为高时,Mn0 关断,Mp1 和Mp2 工作在截止区;可得到:
由式(6)、(7)可确定CK 的直流工作范围,而式(4)、(5)可确定偏置电压的大小范围。 第四,根据以上计算的静态电流和电压偏置等数值,结合提取的工艺参数,估算各晶 体管的宽长比。
第五,在静态工作点正确的情况下,将锁存器接成分频器结构,并进行瞬态分析,使 分频器自由振荡,测算分频器自由振荡时的输出频率,如果要求分频器正常工作时输入的时 钟频率为f,则认为分频器自由振荡的输出频率为f/2 最佳。
静态工作点需要根据系统的实际情况,通过仿真进行调整,而重复以上第二到第五步 骤的过程。此外,锁存器中决定其工作速度的因素有:Q 、Q 两节点的电容,输出电压摆幅 和充、放电电流。为提高电路速度,电路设过程中要尽量减小Q 、Q 两节点的电容,增大充、 放电电流,而对输出电压摆幅的要求要从两方面考虑,输出电压摆幅过大,充、放电过程持续时间会增加,输出电压摆幅过小,则无法驱动后续电路。因此,要合理设计输出电压摆幅。
3 仿真结果
本文采用SMIC 0.18um 1P6M CMOS 工艺,使用Cadence 公司的Spectre 仿真器,对电 路进行了各种情况仿真。本文对分频电路在室温下对不同的工艺角进行了仿真,仿真结果显 示,在Typical NMOS 和Typical PMOS 下,分频器最高可以工作在13.5GHz,在快NMOS 和快PMOS 下,分频器可以达到14GHz 以上频率。10GHz 时钟下的输入输出信号波形如图 4 所示,其中,Vin1为输入时钟信号,OUT 为输出信号。调试参数为:VCLK-=0V,VCLK+=1.5V, T=100ps, Vbias=1.2V. Wmp1、Wmp2=5.5u,Wmn1、Wmn2=4.4u,Wmn3、Wmn4=2.2u,Wmn0=16u, L=0.18u。
图4 波形中可以看出,信号在两级锁存器间传递时,由于信号的突变,而引起毛刺,在 信号输出端加上缓冲电路,可以淹没这种影响,其波形输出如图5 所示,由图可知分频器很 好实现了两路正交输出信号,正确实现了二分频,输出摆幅也满足设计要求。
表1 给出本文中电路功耗和文献[3-6]所用电路功耗。可以看出,本文电路设计功耗相对 较低。
4 结论
本文采用SMIC 0.18um 1P6M CMOS 工艺,单时钟信号控制的动态锁存逻辑结构,在 电源电压为1.8 V 的情况下,仿真实现了一个10 GHz(可工作频率范围为1~13.5 GHz)、功 耗仅为3.1 mW 的分频器。该电路结构简单、功耗低,可用于光纤通讯、雷达、测量等系统 中,具有较广泛的应用前景。
本文作者创新点:文章详细介绍了二分频电路的设计过程和分析方法,采用SMIC 0.18um 1P6M CMOS 工艺,仿真实现了频带宽、功耗低的超高速二分频电路,可广泛用于超高频率 条件下锁相环、时钟数据恢复电路。
来源:维库开发网
上一篇:基于低压电力线的智能载波模块的设计
下一篇:集成多路模拟开关的应用技巧