• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 分析PCB电源供电系统设计概览

分析PCB电源供电系统设计概览

录入:edatop.com     点击:

交流电源地阻抗分析

很多人知道一对金属板构成一个平板电容器,于是认为电源板层的特性就是提供平板电容以确保供电电压的稳定。在频率较低,信号波长远远大于平板尺寸时,电源板层与地板的确构成了一个电容。

然而,当频率升高时,电源板层的特性开始变得复杂了。更确切地说,一对平板构成了一个平板传输线系统。电源与地之间的噪声,或与之对应的电磁场遵循传输线原理在板之间传播。当噪声信号传播到平板的边缘时,一部分高频能量会辐射出去,但更大一部分能量会反射回去。来自平板不同边界的多重反射构成了PCB中的谐振现象。

\

图4:三种设置情况下 POWERSI计算得到的PCB输入阻抗曲线。(a)不包含电源整流模块;(b)包含电源整流模块;(c)包含电源整流模块和一些去耦电容。

在交流分析中,PCB的电源地阻抗谐振是个特有的现象。图3展示了一对电源板层的输入阻抗。为了比较,图中还画了一个纯电容和一个纯电感的阻抗特性。板的尺寸是30cm×20cm,板间间距是100um,填充介质是FR4材料。板上的电源整流模块用一个3nH的电感来代替。显示纯电容阻抗特性的是一个20nF的电容。从图上可以看出,在板上没有电源整流模块时,在几十兆的频率范围内,平板的阻抗特性(红线)和电容(蓝线)一样。在100MHz以上,平板的阻抗特性呈感性(沿着绿线)。到了几百兆的频率范围后,几个谐振峰的出现显示了平板的谐振特性,这时平板就不再是纯感性的了。

至此,很明显,一个低阻的电源供电系统(从直流到交流)是获得低电压波动的关键:减少电感作用,增加电容作用,消除或降低那些谐振峰是设计目标。

为了降低电源供电系统的阻抗,应遵循以下一些设计准则:

1. 降低电源和地板层之间的间距;

2. 增大平板的尺寸;

3. 提高填充介质的介电常数;

4. 采用多对电源和地板层。

然而,由于制造或一些其他的设计考虑,设计工程师还需要用一些较为灵活的有效的方法来改变电源供电系统的阻抗。为了减小阻抗并且消除那些谐振峰,在PCB上放置分立的去耦电容便成为常用的方法。

图4显示了在三种不同设置下,用Sigrity POWERSI计算得到的电源供电系统的输入阻抗:

a. 没有电源整流模块,没有去耦电容放置在板上。

b. 电源整流模块用短路来模拟,没有去耦电容放置在板上。

c. 电源整流模块用短路来模拟,去耦电容放置在板上。

从图中可见,例子a蓝线,在集成电路芯片的位置处观测到的电源供电系统的输入阻抗在低频时呈现出容性。随着频率的增加,第一个自然谐振峰出现在800MHz的频率处。此频率的波长正对应了电源地平板的尺寸。

例子b的绿线,输入阻抗在低频时呈现出感性。这正好对应了从集成电路芯片的位置到电源整流模块处的环路电感。这个环路电感和平板电容一起引入了在200MHz的谐振峰。

例子c的红线,在板上放置了一些去耦电容后,那个200MHz的谐振峰被移到了很低的频率处(<20MHz),并且谐振峰的峰值也降低了很多。第一个较强的谐振峰则出现在大约1GHz处。由此可见,通过在PCB上放置分立的去耦电容,电源供电系统在主要的工作频率范围内可以实现较低的并且是平滑的交流阻抗响应。因此,电源供电系统的噪声也会很低。

\

图5:针对不同结构仿真计算得到的输入阻抗。不考虑芯片和封装结构(红线);考虑封装结构(蓝线);考虑芯片、封装和电路板(绿线)。

在板上放置分立的去耦电容使得设计师可以灵活地调整电源供电系统的阻抗,实现较低的电源地噪声。然而,如何选择放置位置、选用多少以及选用什么样的去耦电容仍旧是一系列的设计问题。因此,对一个特定的设计寻求最佳的去耦解决方案,并使用合适的设计软件以及进行大量的电源供电系统的仿真模拟往往是必须的。

协同设计概念

图4实际上还揭示了另一个非常重要的事实,即PCB上放置分立的去耦电容的作用频率范围仅仅能达到几百兆赫兹。频率再高,每个分立去耦电容的寄生电感以及板层和过孔的环路电感(电容至芯片)将会极大地降低去耦效果,仅仅通过PCB上放置分立的去耦电容是无法进一步降低电源供电系统的输入阻抗的。从几百兆赫兹到更高的频率范围,封装结构的电源供电系统的板间电容,以及封装结构上放置的分立去耦电容将会开始起作用。到了GHz频率范围,芯片内电源栅格之间的电容以及芯片内的去耦电容是唯一的去耦解决方案。

图5显示了一个例子,红线是一个PCB上放置一些分立的去耦电容后得到的输入阻抗。第一个谐振峰出现在600MHz到700MHz。在考虑了封装结构后,附加的封装结构的电感将谐振峰移到了大约450MHz处,见蓝线。在包括了芯片电源供电系统后,芯片内的去耦电容将那些高频的谐振峰都去掉了,但同时却引入了一个很弱的30MHz谐振峰,见绿线。这个30MHz的谐振在时域中会体现为高频翻转信号的中频包络上的一个电压波谷。

芯片内的去耦是很有效的,但代价却是要用去芯片内宝贵的空间和消耗更多的漏电流。将芯片内的去耦电容挪到封装结构上也许是一个很好的折衷方案,但要求设计师拥有从芯片、封装结构到PCB的整个系统的知识。但通常,PCB的设计师无法获得芯片和封装结构的设计数据以及相应的仿真软件包。对于集成电路设计师,他们通常不关心下端的封装和电路板的设计。但显然采用协同设计概念对整个系统、芯片-封装-电路板的电源供电系统进行优化分析设计是将来发展的趋势。一些走在电子设计前沿的公司事实上已经这样做了。

来源:维库开发网

上一篇:提高ADC应用最佳性能的设计建议
下一篇:多核DSP Bootload代码加载方法研究

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图