- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
2 kW有源功率因数校正电路设计
摘要:有源功率因数校正可减少用电设备对电网的谐波污染,提高电器设备输入端的功率因数。详细分析有源功率因数校正APFC(active power factor corrector)原理,采用平均电流控制模式控制原理,设计一种2 kW有源功率因数校正电路。实验结果表明:以TDA16888为核心的有源功率因数校正器能在90~270 V的宽电压输入范围内得到稳定的380 V直流电压输出,功率因数达O.99,系统性能优越。
关键词:平均电流控制;功率因数校正;谐波污染;有源功率因数校正(APFC)
1 引言
目前家用电器的功率前级多采用二极管全桥整流方式,这会造成电网谐波污染,功率因数下降,无功分量主要为高次谐波,其中三次谐波幅度约为基波幅度的95%,五次谐波幅度约为基波幅度的70%.七次谐波幅度约为基波幅度的45%。高次谐波会对电网造成危害,使用电设备的输入端功率因数下降,而且产生很强的电磁干扰(EMI),对电网和其他用电设备的安全运行造成潜在危害。
有源功率因数校正电路(Active Power Factor Corrector,APFC)可将电源的输入电流变换为与输入市电同相位的正弦波,从而提高电器设备的功率因数,减少对电网的谐波污染。理论上,降压式(Buck)、升压式(Boost)、升/降压式(Boost-Buck)以及反激式(Flyback)等变换器拓扑都可作为APFC的主电路。其中,Boost APFC是简单电流型控制,功率因数值高,总谐波失真小,效率高,但输出电压高于输入电压,适用于75~2 000 W功率电源,应用广泛。因为升压式APFC的电感电流连续,储能电感可作为滤波器抑制射频干扰(RFI)和EMI噪声,并防止电网对主电路的高频瞬态冲击.电路有升压斩波电路,输出电压大于输入电压峰值,电源允许的输入电压范围扩大,通常可达90~270 V,提高电源的适应性,且升压式APFC控制简单,适用的功率范围宽。因此,这里提出了一种基于Boost电路拓扑,以TDA16888为控制核心的2 kW有源功率因数校正电路,该电路可将功率因数提高到O.99以上。
2 Boost APFC电路原理
常用于实现Boost APFC的控制方法有以下3种:
(1)电流峰值控制 开关频率固定,工作在电流连续模式(CCM)下,采用Boost电路结构,通过检测开关电流控制。该方法电感电流的峰值(控制的基准)对噪声敏感,容易产生控制误差。
(2)电流滞环控制 开关频率可变,工作在CCM下,采用Boost电路结构,通过检测电感电流控制。该方法的负载大小对开关频率的影响较大,由于开关频率的变化幅度大,设计输出滤波器时,需按最低开关频率考虑,故难以得到体积和重量最小的设计。
(3)平均电流控制 开关频率固定,工作模式任意,通过检测电感电流控制,需要放大电流误差信号。这种方法的工频电流的峰值是高频电流的平均值,高频电流的峰值比工频电流的峰值更高,总谐波畸变(THD)很小,对噪声不敏感,电感电流峰值与平均值之间的误差小,可工作于CCM和DCM模式下,适合于任何拓扑。
综合考虑,本设计采用电压电流双闭环的平均电流控制模式,图1为其原理图。
图1中,检测到电感电流iL,则得到信号iLR1,将该信号送入电流误差放大器CA中,电流基准值由乘法器输出z,乘法器有两个输入,一个为x,是输出电压Vo/H与基准电压Vref之间的误差信号;另一个输入y,为电压DC的检测值VDC/K,VDC为输入正弦电压的全波整流值。
平均电流法的电流环调节输入电流平均值,使其与输入整流电压同相位,接近正弦波形。输入电流信号被直接检测,与基准电流比较后.其高频分量的变化通过电流误差放大器,被平均化处理。放大后的平均电流误差与锯齿波斜坡比较后,给开关Tr驱动信号,并决定其占空比,从而迅速而精确地校正电流误差。由于电流环具有较高的增益一带宽(gain-banelwidth),使跟踪误差产生的畸变小于1%,容易实现接近于1的功率因数。校正后的输入电压Vi、电流ii的波形如图2所示。
3 APFC电路设计
这里采用Siemens公司的PFC控制器件TDA16888设计APFC电路。设计的主要指标参数有:交流输入电压为90~220 V;直流输出电压为380 V;输出功率高于2 kW;功率因数大于0.99;变换器效率高于90%。Boost APFC电路原理图如图3所示。
作者:王 琪,高 田 西安工业大学 来源:电子设计工程
上一篇:一种具有较大围长的正则LDPC码构造方法
下一篇:流量迁移,用户向移动互联网的迁移