• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 一种基于电荷泵的CMOS 像传感器

一种基于电荷泵的CMOS 像传感器

录入:edatop.com     点击:

这个电路使用了两个非重叠的、反相的时钟clk和clk~,幅值为电源电压Vdd两个NMOS器件M1和M2以交叉耦合的方式连接,交替导通,导通时分别拉动相应节点N1或N2至输入电压Vin_c。时钟脉冲交替加在电容C1和C2上,在NMOS截止的一边,相应电容的电压泵至Vdd+Vin_c,同时这一边的PMOS导通,输出这个电压至Vout_c。在一些时钟周期以后,节点N1和N2有反相的、幅值为Vdd+Vin_c的时钟脉冲,两个PMOS交替导通,使输出Vout_c一直为Vdd+Vin-c本文中,Vin_c设为Vdd由于NMOS的阈值电压的影响,Vout_c=2Vdd-Vthn。输出波形如图2(b)所示。电荷泵的输出Vout_c在经历最初的大约1μs的时间以后达到稳定,稳定值约为5.8 V。图中的小插图是输出电压稳定以后的纹波电压.它的摆幅约为30 mV。由于这个电压在充电周期加在像素单元中的重置开关的栅极上,导通重置开关使充电节点电压达到电源电压,因此当充电节点电压已经达到电源电压以后,栅极电压上的纹波不再影响充电节点电压,所以电荷泵输出端的电容C3不必做得很大,以减小纹波电压的摆幅。

像素单元的重置脉冲信号Vreset_p由外围电路产生,它的幅值是电源电压Vdd,为使这个高电平升高为电荷泵的输出电压,需要一个电平转换电路,如图3(a)所示。Vreset_c是由外围电路产生的普通的重置脉冲信号,它经过两个反相器将幅值提高至Vout_c,两个反相器的电源电压由Vout_c代替。M5,D1和C1的使用是为了正确地控制M1。当Vreset_c是低电平时,M2截止,M5导通,电源电压对C1充电至VC由于D1的正向电压,VC=Vdd-Vdd,由于VC<Vout_c-Vthp,因此M1导通,VN=Vout_c;当Vreset_c是高电平时,M2导通,由于电容C1的电荷保持特性,此时VC=2Vdd-V1,这个电压超过Vout_c,M1截止,因此VN1降为低电压。这个时候因为D1的单向性,电容C1的电荷不经过M5回流,保持VC的不变。这样节点N1上产生了与Vreset_c反相的波形,再经过M3和M4组成的反相器的反相,输出Vreset_p与Vreset_c同相。但幅值已被提高。图3(b)是信号的波形示意图。

3 仿 真

这里提出的电路使用TSMC的0.35 μm Mixed Mode模型库仿真,仿真结果符合设计要求。

图4中显示的是对像素单元中的源极跟随器的仿真结果.由等式(4)可知,源极跟随器的栅源电压Vgs2与宽度W的方根成反比,如图4(a)所示,与偏置电流Ibins的方根成正比。同时调整源极跟随器的宽度和偏置电流可以降低充电节点电压的摆动范围下界。在本电路中,宽度由1.5 μm调整至3 μm,偏置电流有10 μA调整至5 μA,Vgs2可减小大约80 mV,有效地拓展了充电节点电压摆动范围下界。

图5是对像素单元中充电节点电压VN的扫描结果,对于重置开关栅极电压Vg1的不同值,VN的瞬态响应表现出不同的特性。从图5中可以明显看出,随着Vg1的升高,VN的最终值也随之升高,同时VN达到最终值的时间也随之逐渐缩短。在传统的像素单元中,充电周期的Vg1是3.3 V,它可使VN的最终值达到2.546 V,VN达到2.5 V时需要大约4μs的时间;而当Vg1为5.8 v时,VN的最终值可以达到3.3 V,而它达到最终值只需时6.7 ns,可以将充电周期设为10 ns。在这种情况下,充电周期相比于传统像素的充电周期大大缩短,从而可以提高传感器的帧率。

4 结 语

提出一种基于电荷泵电路的CMOS图像传感器,通过提高重置脉冲信号的幅值,以及调整源极跟随器的参数,可以有效地提高充电节点电压的摆幅。在充电周期提高重置开关的栅极电压也减小了充电时间常数,缩短了充电周期,从而提高了图像采集的帧率。仿真结果也验证了这种方案的可行性。

作者:余有芳   来源:现代电子技术

上一篇:集成电路代换方法与技巧
下一篇:基于Matlab的交流斩波型PFC电路仿真研究

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图