• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 高压电容器充电变简单了

高压电容器充电变简单了

录入:edatop.com     点击:

设计一个高达kV的高压电容器充电器或电源不是一件小事。采用通用反激式 PWM 控制器的分立式解决方案需要光耦合器,还要具备监视、状态指示和保护功能,这就要很多电路,增加了设计复杂性。尤为重要的是要避免输入过流,这种情况在发生在接通时会被误认为是短路的容性负载所引发。还必需确保该类型的转换器只有输入电压在安全工作范围之内时才接通,从而保持长期可靠性。

专业高压闪光灯系统、安全控制系统、脉冲雷达、汽车安全气囊发射、应急频闪灯、安全/存货控制系统和雷管等都需要在一个电容器的两端产生一个高电压。怎样设计一个可靠性、成本、安全性、尺寸和性能都优秀的高压电源就是设计师必需应对的主要障碍。不过,凌力尔特公司最近推出的 LT3751 极大地简化了这一问题。

LT3751是全功能反激式控制器,用来对大型电容器迅速充电到1000V,是之前推出的LT3750的第二代版本。其增加的功能包括从变压器的主或副端检测输出电压,接受更高的输入电压,同时具有更高的可编程性和更多保护功能。LT3751驱动一个外部N沟道MOSFET,可以在不到1s的时间内将一个1000μF的电容充到500V。此外,它还可以为主端输出电压检测而配置,无须光耦合器。对于更低噪声和更严格的输出调节应用而言,一个为输出电压分压的电阻分压器网络可以用来调节输出,从而使该器件非常适合满足高压电源的要求。同时,可调变压器匝数比和两个外部电阻使输出电压调整大为简化。此外,LT3751还有一个通过串联电阻供电的内部60V并联稳压器,可以在    4.75~400V的输入电压范围内工作。这允许最终用户接受一个极宽的输入电源范围,其VCC输入接受范围为5~24V。

LT3751工作于临界模式,这种模式介于连续导通模式(CCM)和不连续导通模式(DCM)之间。临界模式控制最大限度地减少了转换损耗和变压器尺寸,在为一个容性负载供电时非常容易实现电流平稳上升而不会进入限流状态。临界模式的另一个优势是,它解决了使用电压模式或PWM方法时可能出现的大信号稳定性问题,可以提供88%的效率以及快速瞬态响应。输出电压调节由同时采用峰值主端电流调制和占空比调制的双路重叠调制来实现。

图1 具主端输出电压检测的LT3751应用电路

图1电路显示了LT3751的运作方式。其输出电压通过变压器的主端绕组检测。这种主端输出电压检测仅利用一个部件便保持了隔离作用,而且结构简单。输出电压在RVOUT引脚上被检测,并通过R8、R9和变压器匝数比的选择来调节。这一隔离电路运用片上差分 DCM比较器,以12~24V输入电压将一个电容器充至450V。

DCM比较器的差分工作模式允许LT3751准确地用400V甚至更高的电压工作。此外,需要VOUT比较器和DCM比较器实现4.75V的低输入电压,同时使用一个逻辑电平外置MOSFET。这允许用户接受一个极宽的电源范围。让LT3751作为一个电容器充电器工作仅需要5个外置电阻。输出电压跳变点(VOUT)可以用下述公式在50~450V范围内调节。

R9=0.98N/(VOUT+VDIODES)×R8

其中,N是变压器的匝数比,VDIODES是D1和D2的压降。

一旦达到已设定的输出电压跳变点,LT3751就停止给输出电容器充电。充电周期通过切换CHARGE引脚来控制。输出电容器的最高充电/放电速率受变压器中温度变化和外部 MOSFET功耗的限制。图1中,在没有空气流动的情况下限制变压器表面温度高于环境温度40℃需要平均输出功率低于或等于40W。

PAVE =1/2COUT·freq·(2VOUT·VRIPPLE-V2RIPPLE)≤40W

其中,VOUT是输出跳变电压,VRIPPLE是输出纹波电压,freq是充电/放电频率。通过让变压器体积加大和提供强制空气冷却,可以提高最大可用输出功率。对于输出电压高于450V的情况而言,必须用一个有更高匝数比和更高主端电感的变压器取代图1中的变压器。图2显示一个在不到100ms时间内充电到400V的100μF输出电容器的充电波形和平均输入电流。

图2  图1电路的充电波形

 

作者:凌力尔特公司Bruce Haug    来源:今日电子/21IC

上一篇:晶体硅太阳能电池产业化技术现状与发展展望
下一篇:DVB系统中多路TS流的软件复用关键技术及实现

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图