- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
DSP控制的电力线通信模拟前端接口设计
引言
随着电子技术和网络技术的发展,运用电力线作为载体进行信号传输受到人们越来越多的重视,得到了越来越广泛的应用。电力线是当今最普通、覆盖面最广的一种物理媒介,由其构成的电力网是一个近乎天然的物理网络。如何利用电力网的资源潜力,在不影响传输电能的前提下,将电力输送网和通信网合二为一,使之成为继电信、电话、无线通信、卫星通信之后的又一通信网,是多年来国内外科技人员技术攻关的一个热点。电力线载波通信就是在这种背景下产生的,它以电力网作为信道,实现数据传递和信息交换。电力线作为载波信号的传输媒介,是唯一不需要线路投资的有线通信方式。
作为通信技术的一个新兴应用领域,电力载波通信技术以其诱人的前景及潜在的巨大市场而为世界关注。我国从上世纪50年代开始从事电力线载波通信技术的研究。90年代以后,电力线载波技术的需求随着我国经济的发展进一步扩大。目前,该技术开始应用于家居自动化、远程抄表、宽带上网等领域。专家介绍,在一些干扰大、布线困难的工业领域若要实现自动化控制,采用电力载波通信方式能达到事半功倍的效果,因此,电力网又被喻为"未被挖掘的金山"。
实现电力线载波通信的方法有很多,通常利用一个专用通信芯片实现系统的调制解调部分,而系统的应用部分则使用另一个控制器来完成,这种双片法是一种不错的选择。随着数字信号处理技术的发展,可以合二为一,一个高级的DSP控制器可以实现电力线调制解调器的功能。DSP控制器可以在软件上实现调制解调器功能,用片上外设在电力线上通过模拟终端接口,来实现接收和发送。
本文叙述的是一个遵从CEA709[1]协议,使用定点DSP控制器(TMS320LF2812),从软件和硬件上来实现电力线调制解调器的系统。文中描述了模拟终端具体的设计方法,而这个终端对稳定的收发运行过程来说是必要的。
1 基于CEA709协议的系统框架
图1为ANSI/CEA709协议标准的物理框图。该协议的详细说明可见参考文献[1]。
图1 CEA709协议物理层框图
在轨道交通、网络能源管理、智能楼宇、暖通空调、煤矿安全、能源和环境管理等领域应用广泛的控制网络平台LonWorks成为中国国家标准指导性技术文件。全球的楼宇、家庭、工业和运输自动化业目前大量采用了基于LonWorks平台。LonWorks平台是世界上最大住宅智能电表网络的核心技术平台,被瑞典、荷兰和澳大利亚等国家的住宅和小型商业电表的智能表所采用,而运行在此平台上的协议是美国控制网络标准ANSI/CEA709。目前,已有越来越多的中国生产厂和集成商采用了ANSI/CEA709协议标准,例如在青藏铁路——世界上最长的高海拔铁路列车上,利用LonWorks技术平台,采用ANSI/CEA709协议用于技术监测和控制各种系统,包括监测最先进的旅客用供氧系统。
对于图1中的CEA709物理层框图,用DSP来实现CEA709调制解调器功能的系统框图如图2所示。DSP(TMS320F2812)具有150MIPS的计算能力,信号采集使用一个12位片上模/数转换器,其转换速度为12 Msps,DSP提供多PWM来适应电力线调制解调器。
图2 系统框图
2个片上PWM输出和1个线驱动器用于实现调制解调器的发送功能。一个A/D输入用来采样带通输入端口信号,以此来实现调制解调器的接收功能,带通滤波器实际上是一个离散滤波器。它们和交流阻塞电容、耦合变压器一起完成接口的模拟前端设计。
下面主要介绍模拟前端接口的设计过程。
2 模拟前端及接口的实现
CEA709通信系统以131.579 kHz载波频率来定义,每个传输数据位由载波频率正弦波上24个周期组成,因此波特率为5.5kbps。每个位段的相位可以设为0°而使该位置0,也可以设为180°来使该位置1。
2.1 信号接收
首先去除耦合网络中的50/60 Hz电力线电压,然后再用一个二阶有源带通滤波器滤出信号,可以检测到131.5kHz的调频信号。这个滤波器是通过一个运算放大器来建立的。带通滤波器的输出由DSP的模/数转换器的一个通道采样,信号采样序列由FIR滤波器处理,同时,这个滤波器的输出用来进行时钟恢复和数据检测。
采样得到的是115 kHz的接收信号,它是载波频率的(21/24)倍。这个信号在131.5 kHz至中频16.5kHz的范围内向下采样,然后用采样频率时钟与输入载波正弦信号混合相乘,两个正弦波相乘的结果生成两个正弦波频率的"和"与"差"的合成信号,如图3所示。
图3 采样后的频率效应
运行时,DSP在每个ADC采样转换完成后都会产生一个中断,然后每个采样信号就和数字PLL(PhaseLocked Loop锁相环)输出比较,来估计接收到的信号的相位。在频率5.5kHz下,相位是确定的。如果相位小于±90°,那么就假定接收到的是"0"信号,否则就是"1"信号。
接收的位序列和已知的"位同步"域进行比较,当位同步数据接收到之后,调制解调器就开始搜寻"字同步"域。字同步数据标志着消息数据的起始,同时也定义了消息数据的极性。当包的数据确定后, 11位码字解码为8位的数据字节,接收字节的校验位和通过计算得到的校验位进行比较,数据从物理层传送到MAC层。然后接收数据进行CRC校验比较,正确数据从数据链路层传输到网络层。
2.2 相位检测
为了检测发送信号的"0"或"1", 中频信号16.5kHz的相位是离散的接收信号值的形式。首先需要用接收的采样信号驱动一个数字锁相环,当这个锁相环的输出被接收的信号同步地锁住后,锁相环和接收信号之间的复数相位的估算是由锁相环调制产生的。复数相位的实部是余弦和,当接收到"0"信号时,它是一个很大的正数值;相反接收到"1"时,它就是一个大的负数。复数相位的虚部是正弦和。它代表了相位有偏差,并反馈给锁相环来调整正弦输出,以跟踪接收的信号。
图4 接收信号处理框图
图4为完整的接收信号的处理框图。为了提高系统的稳定性,加上了一个自动增益控制模块(Automatic Gain Control,AGC)。它是通过侦测接收信号的平均大小来接收信号的。
作者:装甲兵工程学院 陈建明 来源:单片机与嵌入式系统应用