- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
非线性控制理论在有源滤波技术中的应用
1 引 言
随着电力电子设备等非线性负载的广泛应用,电网中的谐波问题日益严重,造成了电网电压和电流波形严重畸变,对供电质量造成严重的污染,电网中的谐波不仅危害电网本身而且危害其周边设备。如何消除电网中的高次谐波和无功电流使之成为洁净电源,已成为电力电子学、电力系统中的一个重要问题。仅仅利用无源滤波技术治理谐波已经不能满足要求,随着电力电子技术的不断发展,人们将滤波研究方向逐渐转向有源滤波器,它已经成为电力电子应用极具生命力的发展方向。同时随着微电子技术的迅速发展,高精度、高速处理器(如DSP)的出现,使复杂的参量和系统状态实时计算或估计成为可能,并且使现代控制理论能够应用于电力电子系统。
有源滤波器的控制主要由谐波信号的检测和补偿分量的产生两大部分组成。从图1可以看出,有源滤波器通过检测电路检测出电网中电流电压的畸变部分,然后采用适当的控制方法控制功率逆变器产生相应的补偿分量,并注入到电网中,以达到消谐目的。这两个因素共同决定着有源电力滤波器的品质。值得一提的是有源电力滤波器的谐波电流检测电路不同于一般电力谐波检测电路,它通常不需要检测出各次(或一定次数的)谐波,只需检测出除基波有功电流(或基波电流)之外的总的谐波电流,且对检测速度和实时性要求较高。所以采用的谐波电流检测方法很重要,它决定了谐波电流的检测精度和跟踪速度,进而影响有源滤波器的谐波电流补偿效果。
近20年来,非线性控制理论在有源滤波技术中的应用得到了大量的研究。本文主要介绍了反馈线性化方法、非线性无源控制、非线性变结构控制、非线性自适应控制、非线性
鲁棒控制以及自抗扰控制在有源滤波技术中的研究和应用现状,提出了若干需要解决的问题,并对非线性控制理论在有源滤波控制中的应用前景作出了展望。
2 反馈线性化方法
反馈线性化方法是非线性系统控制理论的一种有效方法,包括基于微分几何理论的输入对状态反馈线性化、输入输出线性化,直接反馈线性化 ( DFL)方法和逆系统方法等。
基于微分几何理论的反馈线性化方法主要有两种:输入对状态反馈线性化和输入输出线性化。前者主要用于研究非线性系统的镇定问题,后者用于研究系统的跟踪和调节问题。在系统满足一定的条件下,这两种方法可以互相转化。
微分几何方法通过微分同胚映射实现坐标变换,根据变换后的系统设计非线性反馈,实现非线性系统的精确线性化,微分几何方法适合仿射非线性系统。对于仿射非线性SISO系统,若系统的关系度r等于系统的维数n,则一定可以构造出微分同胚映射,通过合理地构造非线性反馈,实现系统的精确线性化。对于关系度小于r和没有明确的输出的系统。通过构造一个虚拟的输出,同样有可能实现系统的线性化。对于某些不能实现精确线性化,可采用零动态的设计方法,即通过反馈实现系统的外部响应线性化,对于内部响应,则只要系统稳定。
文献[1]利用输入对状态反馈线性化方法,引入了一个辅助的输入变量,就可以得到解耦的线性系统模型,然后利用极点配置控制策略设计一个线性跟踪控制器。这种控制方法还有待于进一步研究以取得更好的控制性能。文献[2]利用输出反馈线性化方法控制直流测电容电压。控制系统分为两个控制环:内部电流环采用精确线性化方法,使注入滤波器的电电流快速准确跟踪电流参考值;外部电压环采用非线性反馈方法控制,这样就可以把滤波器看成一个理想电流源和非线性负载的并联。仿真结果表明该方法可以有效的补偿负载电流谐波,消除无功功率,并且可以消除由于参数不确定性引起的稳态误差。
3 非线性变结构控制
50年代在前苏联发展起来的滑模变结构控制,近年来在电力电子领域的非线性控制中得到了越来越广泛的应用。这种控制主要有两种形式:一种是在微分几何方法的基础上,对线性系统采用线性变结构控制,这一类方法仍然需要非线性控制反馈规律,没有充分地利用变结构控制对参数的鲁棒性;另一种方法是在非线性系统模型上直接设计变结构控制规律。
在变结构控制系统中,控制规律是一个根据在状态空间中定义的超平面上切换的非连续的函数。控制规律迫使处于任何初始条件下的系统状态按一定的趋近律到达并保留在该超平面上 ,在超平面上系统的动态成为滑动模态。同时由于变结构控制系统中的滑动模态具有不变性,既系统的运动状态只取决于滑模面的参数和控制规律,而和系统本身的参数摄动和外界扰动无关。这种理想的鲁棒性吸引着众多学者致力于该控制策略在相关领域的应用研究。另一方面则由于构成多种变换器的电子开关所产生的不连续控制,使得各类电力电子变换器正好被描述为变结构系统,所以在有源滤波技术中引入滑模变结构控制是很理想的选择。
文献[3]将变结构系统和滑模控制技术应用到有源电力滤波器的设计和实现,对三相电压源逆变器构成的有源电力滤波器进行闭环控制。此类控制系统仅需简单的进线电流测量,不需从负载电流计算有功和无功功率。文献[4]在分析串联型有源电网调节器数学模型的基础上,给出其变结构控制算法和相关参数的设计,避免了负序电压的检测计算,实现了负载电压的闭环控制。该系统不仅能平衡三相不对称电压,还能调节电压大小。文献[5]中的滑模变结构控制策略可避免补偿电流给定值Ic*的复杂计算,使控制变得简单而易于实现。由于实现了对Is*跟踪的闭环控制,故可获得良好的调节性能。但是当负载发生突然变化时,Is会发生跟踪误差,这一问题有待解决。
文献[6][7]采用离散滑模控制,在整个控制过程中,除了对电网侧谐波电流进行检测外,只需要判断其过零点就可以实施控制,较为简单,控制效果好。
可以看出,变结构控制方法是一种有效的非线性控制方法。它具有如下优点:1)控制系统的响应不依赖系统结构和参数;2)理论上可以应用到所有类型的非线性系统;3)对比于其它的非线性控制方法,容易实现;4)对参数不确定性和外部扰动具有很好的鲁棒性。但是 ,由于实际控制中要考虑切换元件的惯性、开关存在时延等非理想切换因素,理想滑动模态很难发生,因而变结构控制存在高频抖颤现象。为避免滑模控制过于频繁切换,可以采用带有模糊滑动模态的变结构控制FSVC。文献[8]使用模糊滑模变结构控制实现了对并联APF中的谐波电流,负序电流和无功电流的补偿。所设计的综合控制器与系统的结构和工作点无关,有较强的鲁棒性。并且控制器的算法简单,实时性较强,能有效地改善系统的暂态稳定性。此外,也可以采用饱和的切换函数替换理想的切换函数使这一问题得到了一定程度的解决。
来源:维库开发网
上一篇:电子基础知识--各种集成电路简介
下一篇:基于SSH的网络安全解决方案