• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 无线通信 > 技术文章 > 城域网的建设与应用(三)

城域网的建设与应用(三)

录入:edatop.com     点击:

周志敏


  编者按:上一篇文章《城域网的建设与应用(二)》我们介绍IP城域网建设、城域网层次划、宽带 IP城域网骨干网络技、IP城域网路由规划、新一代IP城域网解决方案。 本篇我们将介绍以下内容:

1. 城域以太网技术

  以太网技术的应用范围也从早期单纯的LAN逐步向城域网(MAN)发展,即所谓的城域以太网(Metro Ethernet)。城域以太网主要面向的是城区内的企业用户,其优越性表现在三个方面:

①以太网低廉的成本,包括设备成本及连接成本;

②网络管理及工程人员对以太网技术已非常熟悉;

③以太网接入速度的灵活性,用户可以向网络服务供应商订购从1Mbps到1Gbps范围内的任意接入速度,并且可以根据企业的需要灵活调整,这一点是现有的诸如桢中继,ATM等所无法比拟的。

  目前,城域以太网还只能提供城区范围内的点对点连接服务,主要是提供企业的不同分部网络间的互连,企业网络或大楼向广域网(WAN)接口的连接等。因为以太网技术的本质是在一个共享传输媒介上提供多点接入方式,因此当前的点对点连接服务并没有充分发挥以太网技术的特点。并且,对于企业用户而言,其分支办公室网络可能分布在几个城市内,因此,它们真正需要的是能够覆盖多个城市范围的网络接入。对于这两个问题,当前已有一些网络服务供应商在尝试利用虚拟局域网(VLAN)提供多点到多点的以太连接。

  VPLS(Virtual Private LAN Service)是为了用于企业分支办公室局域网互连的解决方案。它有效的结合了IP/MPLS,VPN,以太网交换等多种技术各自的特点,为广域范围的多点到多点LAN互连提供了实现基础。从连接方式上来看,VPLS利用IP/MPLS的广域骨干网络为企业用户提供了一种仿真的LAN连接,因此也被称为透明的LAN服务(Transparent Lan Service——TLS)。从网络拓扑结构与运营维护来看,VPLS则提供了与VPN类似的服务,唯一的区别在于VPLS的网络边缘节点采用了链路层(即第二层)桥接技术,而VPN则采用了第三层路由技术。

  VPLS网络结构显示了企业用户A与B分别通过VPLS服务连接各自的三个分支结构局域网,这里的关键在于网络运营商的边界设备(Provider Edge——PE),其上运行了支持VPLS相关特性的协议。用户的各个分支局域网通过PE接入到网络运营商的IP/MPLS骨干,并形成一个得力的VPLS域,属于同一个VPLS域的各个分支局域网相互之间可以以LAN方式传递数据流。一个PE上的不同接口可以分别用于不同VPLS用户的接入,这时,PE上为每一个VPLS用户创建一个分离的VPLS进程,用于该VPLS域的通讯管理。这样就保证了即使是多个企业通过同一个PE接入同一个骨干网络,它们的数据流也是逻辑上相互独立的,互不影响,这就充分保证了用户数据的私密性。

  为了完成不同分支站点的连接,在服务于同一VPLS域的PE之间需要建立全网状的互连(即所谓的Full-mesh),这是通过IP/MPLS的标签交换路径(LSP)建立的数据隧道(Tunnel)。前面提到了,PE向用户提供了基于以太网的桥接接入方式,也就是说,PE可以直接接收来自用户分支局域网的以太封装格式的数据桢,并根据数据桢中的MAC地址信息决定将数据转发到合适的LSP上以送达另一端的分支局域网。PE上运行的VPLS协议支持特性使得PE上用于连接用户网络的接口可以象一个桥接设备一样提供二层交换和MAC地址学习的能力。通过MAC地址学习,PE上的每一个VPLS进程都为自己的VPLS域创建并维护一个MAC地址表。当接收到数据桢时,VPLS进程首先查询桢头中的目的MAC地址与MAC地址表中的表项是否有可匹配的。如果有,则数据桢被直接转发到对应的LSP上进行传输;如果没有匹配,则同一数据桢被广播到服务于同一VPLS域的其它逻辑端口上。等待PE设备从拥有这一MAC地址的主机上收到数据而学习到这个地址时,MAC地址表则被更新,而接下来的数据桢则可以被正常转发,这与以太网交换机的工作原理是基本相同的。   

  PE上的VPLS支持还包括了另外两个特性。首先是服务于同一VPLS域的PE之间的信令机制,信令机制主要被用于LSP的建立以及MPLS标签的分配过程。主要的信令机制可有两种选择:基于LDP协议的信令和基于BGP协议的信令,这两种机制的细节在有关MPLS技术及MPLS VPN技术的文献中都已有介绍,在此就不再过多论述。这两钟机制各自有其优缺点,基于LDP协议的信令机制实现比较简单,它是通过在每一对PE之间建立点到点的LDP会话来完成信令过程的。而且,由于LDP协议提出的较早,目前已有许多厂商的产品支持这一机制。不过由于其点到点的会话建立,LDP协议在大型网络中的可扩展性较差;并且,由于以太网的本质是多点接入的,因此LDP在此并不太适合。为此,IETF PPVPN工作组正在制定LDP的扩展协议以支持多点连接特性。相对而言,基于BGP协议的信令机制则可以充分利用BGP路由反射器的特点,这样PE只需路由反射器建立信令会话即可,这就大大提高了可扩展性。同时,BGP协议还可以支持跨越多个自治系统(AS)网络结构,这对于多个网络运营商并存情况下的VPLS实现非常有利。不过,也有许多运营商担心BGP协议的复杂性会为网络运营管理带来较大的困难。

  另外一个特性则是自动发现机制,这对简化VPLS网络的管理与运营是相当重要的。自动发现是指当一个新的PE被增加到网络中时,所有属于同一VPLS域的其它PE可以自动的发现这一新的PE并自动完成相应的LSP建立过程。针对两种不同的信令机制也存在着两种自动发现机制。在采用了基于BGP协议的信令机制的情况下,新加入的PE只需与BGP路由反射器建立一个BGP连接会话,并通过BGP路由反射器向同一VPLS域的其它PE通知有关新的PE的参数。这样,其它PE就可以“发现”这一新的PE并主动与其建立LSP连接。在基于LDP协议的信令机制中并没有定义有关自动发现的功能,但是,通过在网络中增加一个目录服务器则也可以实现类似的功能。目录服务器中为每一个VPLS域维护了相关的配置信息。当新的PE加入网络中,将引起目录服务器上记录的更新,这一更新的结果被发布到其它所有的PE上,从而使得这些PE“发现”新的PE。

2.城域光传送网

  一般来说,城域光传送网被定义为覆盖100km左右,特别是服务于大中型城市和地区的光网络。城域光传送网是骨干光传送网和接入网的桥接区,主要完成接入网中的企业和个人用户与骨干网运营商之间全方位的业务互联互通。骨干网与城域光传送网相连,并在区域之间相互延伸以实现互联互通,骨干网的发展重点是网络容量和长距离传输。接入网将业务直接提供给终端用户,其特点是有多种多样的应用和灵活的结构。处在骨干网和接入网之间的城域光传送网是整个网络体系中的一个重要组成部分,不仅要承载多种网络协议和信道速率,还要具有组网的灵活性和可扩展能力。

  由于城域网位于骨干网与接入网的交汇处,是通信网中最复杂的应用环境,各种业务和各种协议都在此汇聚、分流和进出骨干网。多种交换技术和业务网络并存的局面是城域网建设所面对的最主要问题。

  城域网不仅要求低成本,在支持的客户业务种类上也与长途网不同,系统还要提供丰富的OTU接口,支持多协议多业务接入,承载多种业务格式:PDH、SDH、POS、IP、ATM、FE、GE、10GE、ESCON/FICON/FC、数字视频、多速率自适应等。

  总体来说,宽带城域网的建设应包括城域光传送网、宽带数据骨干网、宽带接入网和宽带城域网业务平台等几个层面。新一代的宽带城域网应以多业务的光传送网为开放的基础平台,在其上通过路由器、交换机等设备构建数据网络骨干层,通过各类网关、接入设备实现语音、数据、图像、多媒体、IP业务接入和各种增值业务及智能业务,并与各运营商的长途骨干网互通,形成本地市综合业务网络,承担城域范围内集团用户、商用大楼、智能小区的业务接入和电路出租业务,具有覆盖面广、投资量大、接入技术多样化、接入方式灵活,强调业务功能和服务质量等特点。

  目前构建宽带城域光传送网采用的3种技术主要是:城域WDM环网、以SDH为基础的多业务传送平台(MSTP)以及弹性分组环(RPR),它们各有自己的特点和适用范围。

  波分复用技术继在骨干网及长途网络中应用后,也开始在城域网应用,特别是其巨大的容量、网络的扩展性及业务的可扩充性,在城域网中显示出特有的优势。但是WDM技术的高成本是城域网环境无法接受的;另外针对城域网客户层业务的多样性及复杂性,城域波分复用技术必须向高效承载多业务方向演进。解决这些矛盾之后,CWDM(粗波分)和OADM环网技术将逐渐成为该技术的主导力量。  

2.1CWDM城域传输技术  

  CWDM技术一般应用于小型城域网或大型城域网的汇聚、接入层,它的波长数目一般为4波或8波,最多16波,波长从1290nm~1610nm(16波系统)。下面是目前CWDM的波长分布情况:O波段为:1290nm、1310nm、1330nm、1350nm;E波段为:1380nm、1400nm、1420nm、1440nm;S+C+L波段共有8个波长:从1470nm到1610nm,波长间隔为20nm。这些波长覆盖了整个光纤的可用波段,包括过去常用的波长1310nm、1510nm、1550nm。  

  由于波长间隔较宽,CWDM系统可以使用非制冷的DFB激光器和带宽滤波器,这样既延续了DWDM技术的优势,又具备了DWDM技术所不具备的一些特点:低成本、低功耗、小尺寸等。它的出现解决了长久困扰城域网建设的性价比问题,而且它最大限度地利用了现有城域光纤基础设施,进而满足了未来小型城域网及大型城域网汇接、接入层业务所需要的带宽。  

  当然,CWDM技术也有其不足之处,比如要建设一个16波的CWDM系统,其带宽范围覆盖了近400nm的光纤工作窗口,其中包括1380nm的高衰减区,普通的光纤介质根本无法适应,需敷设全波光纤才能满足要求。

2.2城域OADM传输技术

  城域OADM环网技术是在考虑客户信号的可靠性基础上发展起来的。利用该技术,可以实现灵活的波长保护和调度。当前,固定波长的OADM在实际工程中已经被采用,波长可调、动态重构的OADM产品也即将走向商用。  OADM系统主要由合波器、分波器、上路波长转换器(OTU-A)、下路波长转换器(OTU-D)、光功率放大器、光前置放大器、子速率复用/解复用器(可选)等单元组成,为开放式WDM系统。其中光功放和前放是可选件,子速率复用/解复用器的应用只要是为了解决网中小颗粒客户信号的承载而设计的。  

  由于上下波上的数目及要求不同,OADM又分为串行、并行、串并结合三种类型。

  串行结构在节点上只对需要上下路的波长进行处理,对通过波长不做光层的复用(MUX)和解复用(DEMUX)处理;并行结构对上下路波长、通过波长都进行复用和解复用处理;串并行混合结构先通过子波带滤波器将在本节点上下路的1个或多个子波带进行滤波,然后对子波带内的每个波长进行复用和解复用处理,而其它子波带在经过子波带滤波/合波器的处理后直通。

3.城域传输网存在的问题

  目前,在城域网中,话音和专线业务通常由SDH和电路交换机提供,数据业务通常由SDH和分离的FR、ATM、IP网提供,这种通过传输网独立组网的重叠网络结构是多年来为不断支持新业务而逐步形成的。该结构有利于各业务网单独规划和运营管理,但随着不同种业务的数量和流量增加,出现网络资源利用率低、统一规划和管理困难、各业务网间互通复杂、网络发展不适应业务多样化需求等问题,使重叠网络结构越来越难以满足市场发展变化的需要,建设和运营成本越来越高,投入和产出不能保持同步增长。

  在承载IP数据方面,现有本地传输网存在不足,IP城域网基本上为独立组网,绝大部分业务直接承载在物理光纤网络上。这种组网方式的好处是节省传输设备投资,使组网成本大大降低,但采用量裸纤互连IP设备,加快了光缆线路资源的消耗,而且裸纤直连无法实现链路保护,不便于业务管理和提供电信级业务。

  城域范围内各业务网独立发展,给城域传输网的规划和发展带来了很多问题,特别是在IP业务高速增长和客户需求多样化的环境中,各业务网单独组网复杂低效,造成传输网资源严重浪费、设备和运营成本高以及业务提供缓慢等问题,主要体现在以下方面:

①传输链路资源利用率低,大量通道富余闲置,网络资源总体过剩、局部不足的矛盾突出;

②城域传网业务接口类型少,承载业务类型有限,不能提供多等级业务,不适应IP网络突发业务的特性;

③由地城域传输网的限制,IP城域网独立组网,光纤消耗大,缺乏有效保护和恢复能力,不能提供有质量保证的IP业务承载;

④大量SDH环网叠加互连,业务开通时间长、不灵活;

⑤难以灵活有效地开展VPN、带宽出租和带宽实时请求等新业务;

⑥多厂家设备组网,网管不健全,无统一网管,业务调度困难,运维成本高。【未完待续】

摘自 赛迪网

上一篇:宽带网络视讯技术和应用
下一篇:光纤的发展及在城域网中选型的考虑

手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

射频和天线工程师培训课程详情>>

  网站地图