- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
数字微波常用调制技术
摘要:本文简要介绍了数字微波常用调制方式PSK和QAM的基本原理,提出在频谱利用率要求较高时应采用多相位PSK或多电平QAM调制方式,并对日常频率指配中对频段、调制方式的选择提出了建议。
一、前言
随着无线电通信事业的飞速发展,频谱资源的日益紧张,如何改进频谱利用技术就成为需要解决的紧迫课题。十几年来,数字调制技术的研究,主要是围绕着充分地节省频谱和高效率地利用可用频带这一中心展开的。前者指的是已调信号频谱占用率问题,后者指的是信道可用频带利用率问题。对于数字微波,要提高信道频带利用率,可通过多电平调制方法解决。如:采用8PSK、64QAM等方式。
二、移相键控PSK(phase shift keying)
用基带数字信号控制载波的相位,称为移相键控。在恒参信道条件下,移相键控与移幅键控(ASK)和频移键控(FSK)相比,具有较高的抗噪声干扰性能,且能有效地利用所给定的信道频带。即使在有多径衰落的信道中也有较好的结果,所以PSK是一种较好的调制方式。
数字调相又分为绝对调相和差分调相两种方式。绝对调相利用载波相位(初相)的绝对值来表示基带数字信号。如,用0相位表示基带信号的1码,用π相位表示基带信号的0码,称作PSK;差分调相是利用相邻码元的载波相位的相对变化来表示数字信号,即当数字信号为“1”码时,载波相位移相π(相对于前一码元相位),当数字信号为“0”码时,载波相位不变(相对于前一个码元)。
二相调制BPSK,即用载波的(0,π)两种相位传送二进制的数字(1,0),为了进一步提高传输速率,现代数字微波调相技术中,经常利用载波的一种相位去携带一组二进制信息码,如四相调制(QPSK),载波的四种相位(0,π/2,π,3π/2)对应四种二进制码元的组合(00,01,10,11),在发端一个码元周期内(双比特)传送了2位码,因此其信息传输速率是BPSK的2倍,依此类推,8PSK的信息传输速率是BPSK的3倍(见图1)。据此,相位分得越多,传输速率越高,但相邻载波间的相位差越小,在接收端对鉴相器的要求越高,将使误码率增加。
在实际应用中,用滚降系数为α的幅频特性,可得到调相的频谱利用率为
η=Log2S/?1+α
上一篇:宽带城域网设计的几条原则
下一篇:新一代终端:PC和WBT的融合