- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
TD-SCDMA高速交通干线覆盖解决方案
1、引言
在目前的建网条件下,磁悬浮列车、高速铁路和高速公路等高速交通干线的覆盖是实现两城市间TD-SCDMA网络连续覆盖的关键手段,是大规模试商用和未来商用网络覆盖不可或缺的部分,若不能在发展越来越快、车速越来越高的高速交通干线上提供连续覆盖的高QoS的3G>业务,将对整个TD-SCDMA网络的应用和运营商的品牌推广带来不利影响。
未来的陆地高速交通干线时速将在200公里至300公里,而对高速轮轨和磁悬浮等交通干线而言,时速将会达到350公里以上,甚至高达500公里。TD-SCDMA系统必须根据自身技术和系统发展的特点,针对高速交通干线对移动通信的不同需求,提出合理的可实现的分步实施的解决方案,满足网络不同发展阶段的覆盖需求。
由于采用了时分双工(TDD)、上行同步、智能天线和联合检测等关键技术,TD-SCDMA系统对高速移动通信的支持能力是有别于其它移动系统的。那么影响TD-SCDMA系统高速移动通信性能的因素有哪些?要支持超高速的交通干线的覆盖,TD-SCDMA系统需要做哪些优化或调整呢?组网方案上需要如何调整?这些都是急待解决的问题,下文将针对以上提出的问题进行详细论述,并提出最终的解决方案。
2、TD-SCDMA系统高速移动通信性能影响因素分析
首先,对于移动通信系统,在高速移动状态下,信道衰落周期将变短,因此就双工通信模式比较而言,TDD系统相对于FDD系统,其抗快衰落特性和多普勒频移能力是有所降低的。
第一,基于技术上的区别,3GPP标准协议规定FDD系统需支持最高移动速度为500km/h,TDD系统最高移动速度则定义为120km/h,因此,TD-SCDMA系统若需支持更高速度的高速移动通信,必须在技术上进一步改进。
第二,TD-SCDMA系统要求实现严格的上行同步,在高速移动环境下,可能出现同步偏差而不能达到系统要求的1/8Chip的同步精度,可能致使系统性能有一定程度的下降。
第三,智能天线快速下行赋形要求上、下行信道必须具备互易性,而在高速移动环境下,上下行信道的相关性变弱,有可能造成系统性能的下降。需要根据不同的速度选择合适的天线方案。
第四,对于联合检测而言,按照R4 TD-SCDMA系统的时隙结构(见图1),在QPSK调制模式下,TD-SCDMA的中间码(midamble码)对高速移动产生的多普勒频偏估计的能力大概在160-250km/h。如果移动速度更高,由于信道的快速变化,数据部分特别是burst两端的数据符号,经历的实际信道与信道估计的偏差较大,因而两端的数据和中心midamble码的信道估计在幅度和相位上会产生一定误差,从而使系统解调性能有所下降。
图1:TD-SCDMA系统时隙突发数据结构 (略)
综上所述,影响TD-SCDMA系统高速移动通信性能的关键因素为高速移动状态下产生的多普勒频移效应和信道估计的偏差、同步难度加大,以及上、下信道相关性减弱等问题。
3、TD-SCDMA高速移动物理层解决方案与性能 根据前述分析,为了提高TD-SCDMA系统对高速移动的支持能力,针对影响TD-SCDMA系统高速移动通信所产生的问题,需要在不改变系统帧结构的情况下,提出有效的解决方案。经过理论分析和大量的仿真分析,在物理层技术方面可以通过优化智能天线的赋形算法(如采用EBB算法)和联合检测信道估计算法来实现,关键是解决多普勒频移对系统性能的影响。 移动通信中的Doppler频移如公式(1)所示:
公式(1)
公式(1)中,V:移动台速度,C:无线电波的传播速度,q:信号到达角度,fc为通信载波中心频率。由公式(1)可以计算,当高速移动速度为400km/h时,TD-SCDMA的频偏将大于700Hz,此时若不进行有效校正,系统解调性能将严重恶化,系统将不能正常通信。 另外,在高速移动过程中,基站和终端经历的多普勒频移是不同的,如图2所示,假设终端在高速移动过程中产生的多普勒频移为Δf ,则信号经过基站到终端下行链路和终端到基站的上行链路的往返传播返回基站的多普勒频移将达到2Δf 。因此,基站和终端应分别采取相应的补偿算法。
图2:基站与移动终端多普勒频移特性
基站侧:优化改进接收机算法,通过在检测算法中加入相位校准和多普勒频移估计功能,可以很好地实现对信道变化的捕获和跟踪,只要在算法中予以补偿,就可以有效地消除多普勒频移带来的影响,使得系统支持高达250km/h以上的高速移动通信。从图3的仿真性能可知,时速250km时,不加相位补偿算法,系统解调性能明显恶化;使用相位校准算法后,解调门限比120km恶化约2dB;对于400km的速度,没有相位补偿算法基本无法工作,使用相位补偿算法有明显增益;而实际网络测试结果表明当时速达到250-350km/h时,通话仍然能够保持连续,话音清晰、链路质量高。
图3:TD-SCDMA系统高速移动性能仿真结果
终端侧:与基站比较,其多普勒频移较小,而且终端本身具备频偏矫正和自动频偏控制功能,即按一定周期和步长来调整频偏,使终端频率跟上频偏变化,因此即使存在大频偏时,终端仍能正常解调,不影响接收性能。但终端需要解决频偏跳变的问题,即在小区交界处,终端发生重选和切换时,由于相对于基站移动方向的改变,会产生频偏跳变,由负频偏变为正频偏,进而要求终端自动频偏控制能力应保证在一定时间内将频偏控制到允许范围内。
4、TD-SCDMA高速移动无线资源管理解决方案 无线资源管理算法和参数对TD-SCDMA系统高速移动的性能有很大影响,为了使系统更好的支持高速移动环境,减小高速移动状态下的同步和切换的影响,需要对RRM算法与参数进行精心设计和优化。
4.1 小区重选策略 在高速移动环境下,如果在服务小区的边缘不能很快重选到目标小区的话,此时服务小区信号强度比较差,容易引起脱网或者起呼失败。因此,优化的解决方案应该是降低小区重选定时器取值并减少服务小区重选滞后量的取值。
4.2 切换策略 在高速移动环境下,除了需要优化设计切换带的大小和合理配置邻小区,切换算法要尽量采用简单的基于1G或2A的导频强度算法,保证最大限度地减小切换过程中的各种时延,提高切换速度。切换带的大小是通过切换算法参数来控制的,在时速250-400km/h移动环境下,充分考虑各种时延因素,应通过参数的优化将切换带控制在500-700m左右。 合理配置邻小区主要考虑高速移动环境下切换关系的简化,可以考虑为高速移动场景设置专网小区,专网小区只建立内部独立和清晰的切换路径,外部大网小区不与专网小区做切换关系,通过组网方案尽量扩大单小区的覆盖范围,减少切换率。
来源:全球IP通信联盟