- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
MIMO技术在TD演进系统中的应用研究
图2给出了PARC方案中的HS-DSCH的基本物理层结构。一个高速率数据流被解复用为最多为NT(NT为发送端天线数)个低速的数据流。每个低速的数据流单独进行编码、交织和调制。由于每个低速的数据流采用的编码调制方式不一定相同,因此所承载的信息比特数也不一定相同。对于某个低速的数据流包含的符号由相应的发送天线发送至空口。其中每个低速的数据流再次被分解至C个子流,其中C代表终端实际接入能力定义的最大HS-PDSCH数目。这些子流分别使用不同的OVSF信道化码扩频后叠加,再使用扰码进行调制,最终得到CDMA调制后的低速数据流由相应的天线发送。
PARC的实现机制
网侧为每根发送天线选择合适的调制和编码方式(MCS),表1为网侧可以选用的MCS集合的一个示例。网侧选择MCS的依据主要由终端反馈的发送天线的SINR决定,该SINR是通过终端上所有接收天线,并且对应于某个特定发送天线的测量和,它包括同一根天线上的码间干扰和来自其它天线上的空间干扰,或者是网侧自己根据上行链路估计得到的下行发送天线的SINR。
分配给某个终端的物理资源包括发送天线、信道化码和时隙,由于网侧在任一时刻都要同时服务多个终端,而不支持MIMO技术的终端不能消除发端采用MIMO技术发送的符号间的干扰,因此不支持MIMO技术的终端不能和支持MIMO技术的终端在同一时隙接收数据。
PSRC
基于TD-SCDMA的MIMO技术采用码复用方案还有另外一种控制速率的方法,称为每流速率控制(PSRC)方案。
与PARC不同的是,PSRC方案把几根天线组成一组,通过分集和赋形形成一个流,在接收端,把从每个发射数据流得到的对应的SINR分别计算,然后得到的每个数据流要反馈的信道状态指示(CQI)值,然后把CQI值反馈给发送端和这个数据流相对应的那组天线;在发射端,不同天线组分别利用这个对应的CQI信息来控制自己对应的那组天线的发射功率,不同的组天线对应的CQI信息不一定相同,因此下一帧发射的速率也不一定相同。
利用SA形成的MIMO阵列,把八根天线分成N组进行速率控制就是PSRC,它还会根据上行链路的反馈信息把一组内的天线进行BF,这样还可以提供赋形增益。特别当每组天线数都为一时,PSRC即为PARC。
图3是3GPP协议里给出的基于PSRC方案的8'2双波束赋形数据流传输场景。网侧使用天线1到天线4组成第一组,通过分集和赋形形成一个数据流,天线5到天线8组成第二组,通过分集和赋形形成另一个数据流,分别从空口发出。
图3 PSRC方案中双波束赋形数据流传输
通过简要介绍MIMO技术以及与TD-SCDMA系统的结合应用,研究TD-SCDMA演进系统中的两种MIMO技术的速率控制实现方案,我们了解到TD-SCDMA的演进系统(如TDHSPA+和TD-LTE)采用MIMO技术,可以支持更高的数据传输速率,为用户的服务质量提供保证,而且与智能天线技术形成了有效的补充,具有非常重要的意义。
作者:北京邮电大学泛网无线通信实验室 廖昕 唐晓晟 来源:通信世界周刊