- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
载波聚合是未来网络容量提升的核心技术
随着移动互联网的发展,数据业务需求呈爆炸式增长,同时,新型移动业务的发展日新月异,每天都有上千款新的移动应用在各大平台"抢夺"用户。要提升用户感知,对于网络容量和速率的要求越来越高,亟须通过多种方式提升网络容量,如MIMO增强、高阶调制和异构网络部署等,其中载波聚合通过频谱扩展的方式提升网络容量成为应对数据业务爆炸式增长最为有效的手段之一,受到广泛关注。
载波聚合是LTE-A的核心技术,可以把相同或不同频段下的两个以上的载波合并为一个信道,成倍提高LTE小区的峰值速率。同时该技术还可有效规避邻区同频干扰,提升LTE网络的性能,更灵活地实现主辅小区间的负载均衡,提升网络容量。载波聚合技术的应用,能够让运营商为移动用户提供更高速、更丰富的业务体验,更好地应对数据业务流量的爆发式增长,提高LTE网络的竞争。
图1.对称和非对称载波聚合示例
图2.多模BBU
运营商从2013年开始已经陆续进行了载波聚合的商用化部署,如北美的Verizon、Sprint,韩国的SKT、KT等,随着终端等产业链的不断完善,载波聚合全球部署的规模逐渐增大。早在2013年亚洲通信展上,中兴通讯在业界首家现场演示了F+D跨频段4载波的载波聚合(CA),演示速率达到1Gbps。实际应用中,香港移动通讯有限公司(CSL Limited)联合中兴通讯演示了现网中1800MHz+2600MHz跨频段载波聚合(CA),演示速率达到300Mbps,中国移动也一直走在TDD载波聚合的最前列。而如今,中兴通讯更进一步积极创新致力于跨制式FDD&TDD载波聚合的研究测试,并首创多模融合BBU,更好地实现FDD和TDD深入融合和FDD&TDD跨制式载波聚合。
载波聚合是未来网络容量提升的核心技术
在4G网络的建设过程中,运营商的可用频谱具有以下几个特点:一是随着4G的规模化发展,运营商已经或即将获取到的LTE频谱资源日趋丰富;二是随着2G/3G逐渐退服,释放出大量频谱资源,但同时这些频谱资源又具有带宽小和离散不连续等特点;三是运营商在FDD频谱基础上,同时又获取到了大量的TDD可用频谱,但是利用效率有待提高。针对上述特点,在频谱资源日益宝贵的市场环境下,载波聚合技术为拥有分散的、不连续频谱资源的客户带来了福音——可以聚合多个载波,极大提高了频谱利用率,降低了建网和运营成本。
载波聚合,通过多个连续或者非连续的分量载波聚合获取更大的传输带宽,从而获取更高的峰值速率和吞吐量。为了实现LTE向LTE-A的平滑升级,降低运营商的建网成本以及保持与LTE系统的良好兼容性,LTE-A在Rel-10中限定进行聚合的每个分量载波完全兼容LTE终端,每个载波带宽为LTE现有带宽,同时每个分量载波都包含同步和广播等系统信息。参与聚合的载波可以是连续的,可以是非连续的,各个载波可以位于同一频段,也可以位于不同频段,分为带内连续载波聚合,带内非连续载波聚合以及带间非连续载波聚合。
载波聚合首次在3GPP Rel-10版本引入,并对载波聚合基本架构和关键技术进行了标准化,并在Rel-11版本针对部分遗留问题如上行载波聚合和不同配比TDD载波聚合等进行了标准化,并根据不同区域运营商需求完善了多种频段和带宽组合场景的标准化;对于FDD+TDD的载波聚合在3GPP Rel-12版本引入,并在2104Q2实现了功能冻结。
因此,聚合载波可以是同制式的,也可以是不同制式的。
TDD系统中LTE每个小区对应一个下行载波和一个上行载波(对于TDD工作在相同载波或频段上),每个UE接入到一个小区中。在载波聚合中,引入了多个载波的概念,考虑到上下行的非对称,LTE-A载波聚合中对应的每个小区对应一个DL载波和可选的上行载波,载波聚合的概念在高层看来也就相当于小区的聚合,每个UE可以同时接入到多个小区。
在FDD系统中,考虑到上下行业务的非对称性,载波聚合可以同时支持上下行对称频谱聚合和上下行非对称频谱聚合。同时考虑下行业务量通常大于上行业务量,Rel-10中仅考虑下行载波个数大于等于上行载波个数的情况,如图1所示,其中下行两载波聚合,上行单载波,此时DL CC1和DL CC2的HARQ和CSI等信息都通过UL CC1来反馈,图中箭头表示上下行载波的linkage关系。