- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
PF-503(800M OFDM)数字移动微波在马拉松直播中的应用
摘 要:通过简述PF-503(800M OFDM)在厦门国际马拉松直播中的使用过程和使用经验,让大家对这种微波设备的特点和优、缺点有一些详细了解!
关键词:OFDM;移动数字微波;多径干扰;解码、编码器
在马拉松比赛中,微波传输一直是一个技术难题。在2003年进行第一届厦门马拉松赛转播时,在比赛线路沿途设立了7个移动信号接收点,但仍有部分路段信号无法覆盖,只能以单机点信号作为补充。由于厦门马拉松比赛赛道分布于环岛路和市区,环岛路部分路段地形复杂,市区内高楼大厦林立,对微波信号传输影响很大。移动转播车发送的信号经过反射、散射等传播路径后,到达接收端的信号往往是多个幅度和相位各不相同的信号的叠加,形成多径干扰,进而引起信号的频率选择性衰减,导致信号畸变。针对这种情况,我台于2005年第3届马拉松直播前购买了日本池上公司的PF-503(800M OFDM)便携式移动数字微波收发系统。并成功地在第3届和第4届厦门国际马拉松赛的直播中圆满完成了移动信号的收发任务!
PF-503系统使用OFDM多载波调制方式。OFDM(Orthogonal Frequency Division Multiplexing) 即:正交频分复用。它是一种无线环境下的高速传输技术,其主导思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。在OFDM系统中,任何瞬间都传送多个数据,单个数据只占用可用频带的一小部分。这样可以将频率选择性衰减扩展到多个符号上,可以有效地将由于衰减和脉冲干扰引起的突发错误随机化,用许多符号受到的较小干扰代替少数相邻符号受到的严重干扰。
在传统的多载波并行传输系统中,整个带宽经分割后被送到子信道,并且频带没有重叠,所以其最大的缺点是频谱利用率很低,造成频谱浪费。而OFDM技术是在频域内将所给信道分成许多正交子信道,在每一个子信道上使用一个子载波进行调制,各子载波并行传输。子载波相互重叠,但又相互正交,因此在接收端容易分离各子载波,频谱利用率高。可以满足SDTV数字信号的传输需求。该系统具有较高的频率利用率,抗干扰能力强,使用适合移动信号接收的800MHz频带与多径衰落强的OFDM调制方式的组合,使其在移动信号传输方面具有其他系统难以比拟的优势。PF-503(800M OFDM)数字移动微波有四路频率,分别为774.5MHz,783.5MHz,792.5MHz,801.5MHz。频段为固定业务使用,管理严格,干扰情况可控制。而且频率低,波长长,绕射能力也强。一般来说,接收的电波分量包括穿透分量和绕射分量,其中绕射分量占绝大部分。针对相同功率下1800MHz和900MHz的频率实验,1800MHz和900MHz的穿透损耗分别为13.4dB和14.2dB,绕射损耗分别为9.6dB和4.3dB。因此对于2GHz OFDM信号,虽然其波长比800MHz短,穿透损耗小,但绕射损耗大,总体上说2GHz信号穿透建筑物的损耗比800MHz的OFDM信号大。因此使用该套800M数字移动微波,较以往使用的微波频率更低,绕射性能更好。
PF-503(800M)数字微波提供了多种的数字传输模式:
OFDM-64QAM/32QAM/16QAM/DQPSK/QPSK/DBPSK/BPSK,在马拉松转播中我们使用的是DQPSK调制模式,其对应的码率是7.243Mbps。DQPSK(Differential Quadrature Phase Shift Keying)即:差分四进制相移键控。采用四相相位键控调制方式可获得较高的频谱利用率,强的抗干扰性和较高的性价比。采用差分相干解调时不需要相干载波,而且在抗频漂能力、抗多径效应及抗相位慢抖动能力方面均优于采用相干解调的绝对调相。理论上是最适合进行马拉松电视转播所采用的调制形式,而实际操作中也证明了这点。发端控制单元把输入的PAL制视音频信号送入SDTV编码器编码,而后将输出的TS流进行外码纠错编码,这里使用的是(204,188)RS码;而后经外交织后再使用卷积码进行内码纠错编码,之后是内交织,在DQPSK调制后进行IFFT(快速傅立叶反变换)。通过IFFT,将频率轴上的输入数据变换成时间轴上的调制信号数据,再将这些数据的一部分循环的相加,形成保护间隔;最后再加上同步符号进行正交调制,输出中频信号。(附下图:发端控制单元内部结构图)
PF-503(800M)微波在发端采用的是全向天线。转播车信号由发端控制单元,到RF单元,经过一个10W的增益器,将OFDM 1W的输出功率增大到10W,然后再由全向天线发射出去。将全向天线架设在转播车车顶上,这样就不再需要人工操作,同时,信号的输出也将更加可靠。(附下图:发端系统图)
这套PF-503(800M)数字微波在收端采用了YAGI天线和全向天线,两者进入一个二选一的信号自动切换器,信号经自动比较选择后才进入收端的RF单元和控制单元,但经过多次试验发现,经过二选一信号自动切换器后,信号大约有2DB的损耗。鉴于接收天线都是架在赛道沿途的高楼顶,全向接受天线基本无法被利用,所以在实际直播中去掉了全向天线和二选一设备,提高信号强度。(附下图:天线装配图)
经过多次测试和演练,整个42公里的赛道上只需要布置4个接收点,就能够进行无盲
区的信号接收,但其中很关键的是马车上信号发射端,必须用对讲适时报出马车当前位置,
让各信号接收点能掌握天线大致方向,并根据演练经验进行人工微调。马拉松转播中,我台采用的是以数字调制模式传输模拟PAL制信号,再将接收到的模拟PAL制信号由光纤传回电视台,在台内进行A/D转换的传输方式,这样减少了信号的损耗。采用了这套PF-503(800M)数字微波进行马拉松电视转播,大大的削减了参与转播的设备和人员的数量,更重要的是,不管拐角或是上下坡,电视信号都不会有中断或者闪烁,即使是连续遇到楼宇、树枝等各种障碍物时,信号也不会受到影响,从而把马拉松赛事优质完整的转播信号展现给广大电视观众。
当然,我台的这套PF-503,在使用过程中也总结了一些注意事项,在今后的转播过程中也是值得注意的:
一个是:由于各个接收点是轮流工作的,所以不是赛事一开始大家就都能收到信号,而是轮流类似接力棒的交接,如果提早把接收系统打开,而长时间没有移动YAGI天线时,他会自动寻找空间中频率最靠近的、最强的电磁波,并尝试作解码动作,由于信号的不稳定和相对较弱,有时将导致接收机的解码器死机,而我们此时在表头上也无法判断出是否死机,一旦真正的信号来了,表头的指示也上来的时候,才会发现解码器报警灯依然亮着,信号并没有被解码,也就无法传回总控了。所以我们想出解决方法:在马车即将到达某点接收范围之前约1分钟左右,将接收控制单元重新启动,避免解码器的死机。(附下图:收端控制单元内部结构图)
其次:由于接收点一般都是在高层建筑顶端,而厦门又是海滨城市,往往有遇到很大的海风,而PF-503的YAGI天线是铝合金制品,非常脆弱,一旦三脚架倒地,天线必然会折断或变形,所以非常有必要将整个三脚架做固定处理,或加大坠重。(附下图:天线实拍)
再有:PF-503还配备室内室外对讲系统,控制单元和射频单元可以非常方便地沟通,尤其在马拉松直播过程中,由于室内同时配备了移动数字电视接收机,我们甚至可以方便地知道比赛的电视画面,室内工作人员在了解马车的方位的同时,可通过对讲系统与把持天线的人员分享。通过两届的马拉松直播,发现这个对讲系统是相当适用的,应尽量使用。
PF-503数字微波系统在马拉松比赛转播活动中充分显示了其技术上的先进性,不仅填补了我台以往在移动信号接收方面的空白,而且在该领域已经处于国内的领先水平。本文通过对该系统的原理的一些初浅分析,使更多的人了解、熟悉并掌握这套系统。由于作者水平有限,且时间仓促,难免有错误和疏漏之处,还望读者不吝赐教。
上一篇:针对智能Wi-Fi射频干扰问题解决方案
下一篇:60GHz毫米波通信技术及发展趋势