• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > Labview 虚拟仪器 > 基于虚拟仪器LabVIEW的网络虚拟实验室系统设计

基于虚拟仪器LabVIEW的网络虚拟实验室系统设计

录入:edatop.com    点击:

0 引言
  随着招生规模的不断扩大,国内普通高等院校实验设备往往比较陈旧,不能及时更新,从而无法跟上教育的飞速发展。目前,高等工科院校仍沿用传统的实验教学方法,实验内容侧重于理论验证和模仿训练,缺乏对学生创新意识的培养和综合能力的提高。滞后的实验设备和死板的实验模式难以调动学生的主动性和创造性,实验教学处于应试教育。而虚拟实验室系统则主要依赖于软件和较少的配套硬件,使实验室的维护费用和工作量大大降低。LabVIEW作为虚拟仪器开发系统的代表,可以利用Internet进行虚拟实验室网络发布,实现了资源共享,避免了仪器重复添置,满足了用户不再受时间、地点**进行远程的实时合作,提高了用户的学习效果。
  1 系统的总体目标
  本系统的总体目标是设计并实现一个基于局域网的虚拟实验平台,该虚拟实验平台主要完成模拟电路数字电路的仿真数据采集等实验,使学生可以通过网络完成大学相关课程的规定实验,突破地域和时间上的**,达到网络实验教学的目的。学生是虚拟实验室的最终用户,每个用户以自己的学号和密码作为出入虚拟实验室的通行证,登录虚拟实验室系统后,可以在客户端进行相关的实验操作。在虚拟实验室中,用户可以选择实验,选择实验仪器,进行实验仿真、数据分析。
  2 虚拟实验室的设计与实现
  系统采用GPIB(general purpose inte**ce bus)仪器控制技术,将可程控仪器连接到LabVIEW仪器控**务器上,实现仪器的本地控制,并利用网络技术,把所提供的实验题目及内容放入建立的网站上,远程用户只需利用网络浏览器,就可以登录到远程实验室的网络服务器上,进行实验操作,远程控制实验仪器。在远程实验室的主页上,还可以加入视频摄像部分。由视频头所采集的图像可通过视频压缩传输技术传送到网页上,这样用户就可以看到自己所操纵的精密仪器,直接从屏幕上看到实验结果。
  2.1 网络虚拟实验室的硬件结构
  整个远程虚拟实验室系统的硬件是由Web服务器、仪器控**务器、硬件实验电路控制平台、GPIB可程控仪器以及视频摄像头组成的。硬件平台主要由电源板、89C51串口通信板、低频实验板、数字实验板、实验台控制板组成。电源板为整个实验电路提供±5 V,±12 V和+18 V电压;串口通信板完成与上位机的串口通信,并发送命令参数给实验台控制板;实验台控制板进行具体的仪器测试点切换工作;模拟实验板和数字实验板实现的是具体的实验电路。
  单片机串口通信板在硬件平台中处于至关重要的地位,它负责与LabVIEW服务器的串行口通信、实验数据字节的输出和获取、模拟实验测试点的切换。系统选用了AT89C51作核心控制器。实验台控制板主要实现模拟实验各输入/输出测试点的可控制切换。实现多个模拟实验时,需要切换输入信号输入点和变更信号参数,还需要切换数字电压表和示波器的测试点。由于实验系统需要实现远程控制测试点的切换,所以模拟实验板上相关测试点都必须引出接线点,以便于与实验台控制板接口。当增加实验数目,也无需改动实验台控制板时,只要从实验板引出测试点和实验台控制板接口即可。
  2.2 远程虚拟实验室系统软件设计
  整个远程虚拟实验室系统的软件构成可分为以下几个子系统:Web服务器子系统、本地仪器控制子系统和客户端子系统。
  Web服务器是整个系统的核心部分。通过Web服务器,用户可以访问Web站点、控制仪器,并获得实验结果。公共网关接口(CGI)和传输控制协议(TCP)是客户端与Web服务器以及Web服务器与实验室服务器之间的主要通信方法。在本地控制子系统中,作为控制仪器的PC机上装有通用接口总线(GPIB)接口和一块网卡。仪器控**务器通过已建立起的TCP/IP通道获得来自Web服务器控制仪器的命令字符串。进而启动仪器工作,完成测试任务。客户端子系统是嵌入在Web服务器中。当用户登录到Web服务器上后,用户可以浏览虚拟实验室站点,获得所提供实验的概括介绍以及详细说明。
  2.3 虚拟实验室的交互过程
  开始实验操作时,远程用户通过浏览器进入远程虚拟实验室系统网站的登录页面,如图2所示。
  
  当Web服务器接收到来自客户端的有效CGI(common gateway inte**ce)请求后,从表单中获取相应的实验参数,进而向仪器控**务器提交调用VI的请求。运行于仪器控**务器上的G Web Server接收到请求后,建立起与客户端TCP/IP连接,调用相应的VI程序:首先调用串口通信程序,即通过串口向硬件实验平台发送控制指令;然后启动仪器控制VI模块,使其通过GPIB接口卡调用相关仪器设备,对实验电路进行测试;最后将实验测试结果以CGI响应的方式回传到Web服务器,由Web服务器端的CGI程序刷新客户端显示,完成了整个实验的操作过程。
  3 系统设计技术实现
  系统的整体设计采用Application Server&API结构。Application Server&API结构使用LabVIEW编程,以其内置TCP/IP模块为基础,构造一个Application Server应用服务器端和一个API用户终端,由TCP/IP模块完成网络互连,数据通信以及容错处理。该结构要求API用户终端将Application Server应用服务器端板卡采集的实验数据下载到本地终端来分析、计算、显示以及存储,除了对网络带宽、稳定性有很高的要求之外,对API用户终端的计算机性能也有很高的要求,适用于远程软件共享和仪器共享型实验。主程序框图结构如图3所示,客户端API模块先向服务端发送用户信息和实验请求,经服务端验证通过,建立TCP连接;然后服务端接受客户端实验参数并在进行实验仪器初始化;服务端采集实验数据并通过TCP/IP协议发送数据包,客户端接受共享实验数据。
  4 结语
  本文以虚拟仪器为平台设计了网络虚拟实验室系统,通过用户登陆界面,嵌入一些虚拟实验仪器设备。实现了利用计算机网络进行实验仪器操作的模拟和测量,并在电子科学学院进行了演示,取得了很好的效果。该网络虚拟实验室较以往的虚拟实验室实现了网络化,达到了资源共享,避免了仪器重复添置和资源浪费,使学生做实验不再受时间和地点的**。具有开发周期短,使用效率高,可扩展性强,成本低廉的特点,是解决目前高教扩招带来的资源紧张问题的一种行之有效的途径。随着计算机技术的不断发展和网络技术的不断完善,虚拟实验室会有更好的应用前景。

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:LabVIEW 编译器深层解析
下一篇:LabVIEW应用于实时图像采集及处理系统

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图